IP Multicast Routing Commands

This chapter describes the commands used to configure and monitor IP multicast routing. For IP multicast routing configuration information and examples, refer to the “Configuring IP Multicast Routing” chapter of the Network Protocols Configuration Guide, Part 1.
clear ip cgmp

To clear all group entries from the Catalyst switches’ caches, use the clear ip cgmp EXEC command.

```
clear ip cgmp [type number]
```

Syntax Description

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type number</td>
<td>(Optional) Interface type and number.</td>
</tr>
</tbody>
</table>

Command Modes

Command Modes

EXEC

Command History

Release	**Modification**
11.1 | This command was introduced.

Usage Guidelines

Usage Guidelines

This command sends a CGMP Leave message with a group address of 0000.0000.0000 and a unicast address of 0000.0000.0000. This message instructs the switches to clear all group entries they have cached.

If an interface type and number are specified, the Leave message is sent only on that interface. Otherwise, it is sent on all CGMP-enabled interfaces.

Examples

The following example clears the CGMP cache:

```
clear ip cgmp
```

Related Commands

Command	**Description**
```
ip cgmp
```

Enables CGMP on an interface of a router connected to a Catalyst 5000 switch.
clear ip dvmrp route

To delete routes from the DVMRP routing table, use the `clear ip dvmrp route` EXEC command.

```
clear ip dvmrp route { * | route }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Clears all routes from the DVMRP table.</td>
</tr>
<tr>
<td><code>route</code></td>
<td>Clears the longest matched route. Can be an IP address, a network number, or an IP DNS name.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example deletes route 10.1.1.1 from the DVMRP routing table:

```
clear ip dvmrp route 10.1.1.1
```
clear ip igmp group

To delete entries from the IGMP cache, use the `clear ip igmp group` EXEC command.

```
clear ip igmp group [group-name | group-address | type number]
```

Syntax Description

- `group-name` (Optional) Name of the multicast group, as defined in the DNS hosts table or with the `ip host` command.
- `group-address` (Optional) Address of the multicast group. This is a multicast IP address in four-part, dotted notation.
- `type number` (Optional) Interface type and number.

Defaults

When the command is used with no arguments, all entries are deleted from the IGMP cache.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The IGMP cache contains a list of the multicast groups of which hosts on the directly connected LAN are members. If the router has joined a group, it is also listed in the cache.

To delete all entries from the IGMP cache, specify the `clear ip igmp group` command with no arguments.

Examples

The following example clears entries for the multicast group 224.0.255.1 from the IGMP cache:

```
clear ip igmp group 224.0.255.1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip host</code></td>
<td>Defines a static host name-to-address mapping in the host cache.</td>
</tr>
<tr>
<td><code>show ip igmp groups</code></td>
<td>Displays the multicast groups that are directly connected to the router and that were learned through IGMP.</td>
</tr>
<tr>
<td><code>show ip igmp interface</code></td>
<td>Displays multicast-related information about an interface.</td>
</tr>
</tbody>
</table>
clear ip mroute

To delete entries from the IP multicast routing table, use the `clear ip mroute` EXEC command.

```
clear ip mroute { * | group [source] }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Deletes all entries from the IP multicast routing table.</td>
</tr>
<tr>
<td>group</td>
<td>Can be either one of the following:</td>
</tr>
<tr>
<td></td>
<td>Name of the multicast group, as defined in the DNS hosts table or with the <code>ip host</code> command.</td>
</tr>
<tr>
<td></td>
<td>IP address of the multicast group. This is a multicast IP address in four-part, dotted notation.</td>
</tr>
<tr>
<td>source</td>
<td>(Optional) If you specify a group name or address, you can also specify a name or address of a multicast source that is transmitting to the group. A source does not need to be a member of the group.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example deletes all entries from the IP multicast routing table:

```
clear ip mroute *
```

The following example deletes from the IP multicast routing table all sources on the 10.3.0.0 subnet that are transmitting to the multicast group 224.2.205.42. Note that this example deletes all sources on network 10.3, not individual sources.

```
clear ip mroute 224.2.205.42 10.3.0.0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip host</td>
<td>Defines a static host name-to-address mapping in the host cache.</td>
</tr>
<tr>
<td>show ip mroute</td>
<td>Displays the contents of the IP multicast routing table.</td>
</tr>
</tbody>
</table>
clear ip pim auto-rp

To delete entries from the Auto-RP cache, use the `clear ip pim auto-rp` EXEC command.

```
clear ip pim auto-rp rp-address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>rp-address</th>
<th>Clears only the entries related to the RP at this address. If this argument is omitted, the entire Auto-RP cache is cleared.</th>
</tr>
</thead>
</table>

| Command Modes | EXEC |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example deletes all entries from the Auto-RP cache:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clear ip pim auto-rp</td>
</tr>
</tbody>
</table>
clear ip rtp header-compression

To clear RTP header compression structures and statistics, use the clear ip rtp header-compression EXEC command.

```
clear ip rtp header-compression [type number]
```

Syntax Description

| type number | (Optional) Interface type and number. |

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If this command is used without an interface type and number, it clears all RTP header compression structures and statistics.

Examples

The following example clears RTP header compression structures and statistics for serial interface 0:

```
clear ip rtp header-compression serial 0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip rtp header-compression</td>
<td>Enables RTP header compression.</td>
</tr>
</tbody>
</table>
clear ip sdr

To delete a Session Directory Protocol (sdr) cache entry or the entire sdr cache, use the clear ip sdr EXEC command.

 clear ip sdr [group-address | “session-name”]

Syntax Description

- **group-address** (Optional) Deletes all sessions associated with the IP group address.
- **“session-name”** (Optional) Deletes only the sdr cache entry with the specified name.

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If no arguments or keywords are used with this command, the system deletes the entire sdr cache.

Examples

The following example clears the sdr cache:

 clear ip sdr

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip sdr cache-timeout</td>
<td>Limits how long a Session Directory Protocol (sdr) cache entry stays active in the cache.</td>
</tr>
<tr>
<td>ip sdr listen</td>
<td>Enables the Cisco IOS software to listen to session directory advertisements.</td>
</tr>
<tr>
<td>show ip sdr</td>
<td>Displays the session directory cache.</td>
</tr>
</tbody>
</table>
frame-relay ip rtp header-compression

To enable RTP header compression for all Frame Relay maps on a physical interface, use the `frame-relay ip rtp header-compression` interface configuration command. To disable the compression, use the `no` form of this command.

```
frame-relay ip rtp header-compression [active | passive]

no frame-relay ip rtp header-compression [active | passive]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>active</th>
<th>(Optional) Compresses all outgoing RTP packets. This is the default.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>passive</td>
<td>(Optional) Compresses the outgoing RTP/UDP/IP header only if an incoming packet had a compressed header.</td>
</tr>
</tbody>
</table>

Defaults

Disabled.

If the command is configured, `active` is the default keyword.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When this command is used on the physical interface, all the interface maps inherit the command; that is, all maps will perform IP/UDP/RTP header compression.

Examples

The following example enables RTP header compression for all Frame Relay maps on a physical interface:

```
frame-relay ip rtp header-compression
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show frame-relay ip rtp header-compression</td>
<td>Displays RTP header compression statistics for Frame Relay.</td>
</tr>
</tbody>
</table>
frame-relay map ip compress

To enable both RTP and TCP header compression on a link, use the `frame-relay map ip compress` interface configuration command. To disable both RTP and TCP header compression, use the `no` form of this command.

```
frame-relay map ip ip-address dlci [broadcast] compress
```

```
no frame-relay map ip ip-address dlci [broadcast] compress
```

Syntax Description

- `ip-address` IP address of the destination or next hop.
- `dlci` DLCI number.
- `broadcast` (Optional) Forwards broadcasts to the specified IP address.

Defaults

Disabled

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example enables both RTP and TCP header compression on serial interface 1:

```
interface serial 1
  encapsulation frame-relay
  ip address 131.108.175.110 255.255.255.0
  frame-relay map ip 131.108.175.220 180 compress
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show frame-relay ip rtp header-compression</code></td>
<td>Displays RTP header compression statistics for Frame Relay.</td>
</tr>
</tbody>
</table>
frame-relay map ip rtp header-compression

To enable RTP header compression per DLCI, use the **frame-relay map ip rtp header-compression** interface configuration command. To disable the compression, use the **no** form of this command.

```plaintext
frame-relay map ip ip-address dlci rtp header-compression [active | passive]

no frame-relay map ip ip-address dlci rtp header-compression [active | passive]
```

Syntax Description

- `ip-address`: IP address of the destination or next hop.
- `dlci`: DLCI number.
- `active`: (Optional) All outgoing RTP packets are compressed. This is the default.
- `passive`: (Optional) Compresses the outgoing RTP/UDP/IP header only if an incoming packet had a compressed header.

Defaults

Disabled.

If the command is configured, `active` is the default keyword.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When this command is configured, the specified maps inherit RTP header compression. You can have multiple Frame Relay maps, with and without RTP header compression.

Examples

The following example enables RTP header compression on serial interface 1:

```plaintext
interface serial 1
encapsulation frame-relay
ip address 131.108.175.110 255.255.255.0
frame-relay map ip 131.108.175.220 180 rtp header-compression
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show frame-relay ip rtp header-compression</td>
<td>Displays RTP header compression statistics for Frame Relay.</td>
</tr>
</tbody>
</table>
ip cgmp

To enable Cisco Group Management Protocol (CGMP) on an interface of a router connected to a Catalyst 5000 switch, use the `ip cgmp` interface configuration command. To disable CGMP routing, use the `no` form of this command.

```
ip cgmp [proxy]
no ip cgmp
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy</code></td>
<td>(Optional) Enables CGMP and the CGMP proxy function.</td>
</tr>
</tbody>
</table>

Defaults

Disabled

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When enabled on an interface, this command triggers a CGMP Join message. This command should be used only on 802 media (that is, Ethernet, FDDI or Token Ring) or ATM. When a `no ip cgmp` command is issued, a triggered CGMP Leave message is sent for the router’s MAC address on the interface for group 0000.0000.0000 (all groups). CGMP can run on an interface only if PIM is configured on the same interface.

A Cisco router will send CGMP Join messages in response to receiving IGMP reports from IGMP-capable members. Only the CGMP querier Cisco router sends these CGMP Join messages on behalf of hosts.

When the `proxy` keyword is specified, the CGMP proxy function is also enabled. That is, any router that is not CGMP-capable will be advertised by the proxy router. The proxy router advertises the existence of other non CGMP-capable routers by sending a CGMP Join message with the non-CGMP-capable router’s MAC address and a group address of 0000.0000.0000.

Initially supported is DVMRP proxying. If a DVMRP Report is received from a router that is not a PIM router, a Cisco IGMP querier will advertise the MAC address of the DVMRP router in a CGMP Join with group address 0000.0000.0000.

To perform CGMP proxy, a Cisco router must be the IGMP querier. If you configure `ip cgmp proxy`, you must manipulate the IP addresses so that a Cisco router will be the IGMP querier, which might be the highest or lowest IP address, depending on which version of IGMP is being run on the network. An IGMP Version 2 querier is selected based on the lowest IP addressed router on the interface. An IGMP Version 1 querier is selected based on the multicast routing protocol used on the interface.
When multiple Cisco routers are connected to a switched network and \texttt{ip cgmp [proxy]} is needed, it is recommended that all of them be configured:

- with the same CGMP option; and
- to have precedence of becoming IGMP querier over non-Cisco routers.

\textbf{Examples}

The following example enables CGMP:

\begin{verbatim}
ip cgmp
\end{verbatim}

The following example enables CGMP and CGMP proxy:

\begin{verbatim}
ip cgmp proxy
\end{verbatim}
ip dvmrp accept-filter

To configure an acceptance filter for incoming DVMRP reports, use the `ip dvmrp accept-filter` interface configuration command. To disable this filter, use the `no` form of this command.

```
ip dvmrp accept-filter access-list-number [distance | neighbor-list access-list-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>access-list-number</th>
<th>Number of a standard IP access list. This can be a number from 0 to 99. A value of 0 means that all sources are accepted with the configured distance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>(Optional) Administrative distance to the destination.</td>
</tr>
<tr>
<td>neighbor-list</td>
<td>Number of a neighbor list. DVMRP reports are accepted only by those neighbors on the list.</td>
</tr>
</tbody>
</table>

Defaults

All destination reports are accepted with a distance of 0. Default settings accept reports from all neighbors.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>11.2</td>
<td>The <code>neighbor-list</code> keyword and <code>access-list-number</code> argument were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Any sources that match the access list are stored in the DVMRP routing table with `distance`. The `distance` is used to compare with the same source in the unicast routing table. The route with the lower distance (either the route in the unicast routing table or that in the DVMRP routing table) takes precedence when computing the Reverse Path Forwarding (RPF) interface for a source of a multicast packet.

By default, the administrative distance for DVMRP routes is 0. This means that they always take precedence over unicast routing table routes. If you have two paths to a source, one through unicast routing (using PIM as the multicast routing protocol) and another path using DVMRP (unicast and multicast routing), and if you want to use the PIM path, use the `ip dvmrp accept-filter` command to increase the administrative distance for DVMRP routes. For example, if the unicast routing protocol is Enhanced IGRP, which has a default administrative distance of 90, you could define and apply the following access list so the RPF interface used to accept multicast packets will be through the Enhanced IGRP/PIM path:

```
ip dvmrp accept-filter 1 100
access-list 1 permit 0.0.0.0 255.255.255.255```

**Examples**

The following example applies access list 57 to the interface and sets a distance of 4:

```
access-list 57 permit 131.108.0.0 0.0.255.255
access-list 57 permit 198.92.37.0 0.0.0.255
access-list 57 deny 0.0.0.0 255.255.255.255
ip dvmrp accept-filter 57 4
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance (IP)</td>
<td>Defines an administrative distance.</td>
</tr>
<tr>
<td>ip dvmrp metric</td>
<td>Configures the metric associated with a set of destinations for DVMRP reports.</td>
</tr>
<tr>
<td>show ip dvmrp route</td>
<td>Displays the contents of the DVMRP routing table.</td>
</tr>
<tr>
<td>tunnel mode</td>
<td>Sets the encapsulation mode for the tunnel interface.</td>
</tr>
</tbody>
</table>
ip dvmrp auto-summary

To enable DVMRP auto-summarization if it was disabled, use the `ip dvmrp auto-summary` interface configuration command. To disable the feature, use the `no` form of this command.

```
 ip dvmrp auto-summary
 no ip dvmrp auto-summary
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
Enabled

**Command Modes**
Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
DVMRP auto-summarization occurs when a unicast subnet route is collapsed into a classful network number route. This occurs when the subnet is a different network number than the IP address of the interface (or tunnel) over which the advertisement is sent. If the interface is unnumbered, the network number of the numbered interface the unnumbered interface points to is compared.

You might want to disable this feature if the information you want to send using the `ip dvmrp summary-address` command is the same as the information that would be sent using DVMRP auto-summarization.

**Examples**
The following example disables DVMRP auto-summarization:

```
 no ip dvmrp auto-summary
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dvmrp summary-address</td>
<td>Configures a DVMRP summary address to be advertised out the interface.</td>
</tr>
</tbody>
</table>
ip dvmrp default-information

To advertise network 0.0.0.0 to DVMRP neighbors on an interface, use the `ip dvmrp default-information` interface configuration command. To prevent the advertisement, use the `no` form of this command.

```
ip dvmrp default-information { originate | only }
no ip dvmrp default-information { originate | only }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>originate</td>
<td>Other routes more specific than 0.0.0.0 can also be advertised.</td>
</tr>
<tr>
<td>only</td>
<td>No DVMRP routes other than 0.0.0.0 are advertised.</td>
</tr>
</tbody>
</table>

### Defaults

Disabled

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command should only be used when the router is a neighbor to mrouted version 3.6 machines. The mrouted protocol is a public domain implementation of DVMRP.

You can use the `ip dvmrp metric` command with the `ip dvmrp default-information` command to tailor the metric used when advertising the default route 0.0.0.0. By default, metric 1 is used.

### Examples

The following example configures the Cisco IOS software to advertise network 0.0.0.0, in addition to other networks, to DVMRP neighbors:

```
ip dvmrp default-information originate
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dvmrp metric</td>
<td>Configures the metric associated with a set of destinations for DVMRP reports.</td>
</tr>
</tbody>
</table>
ip dvmrp metric

To configure the metric associated with a set of destinations for DVMRP reports, use the appropriate form of the \texttt{ip dvmrp metric} interface configuration command. To disable this function, use the appropriate \texttt{no} form of this command.

\begin{verbatim}
ip dvmrp metric metric [list access-list-number] [[protocol process-id] | dvmrp]
no ip dvmrp metric metric [list access-list-number] [[protocol process-id] | dvmrp]
ip dvmrp metric metric route-map map-name
no ip dvmrp metric metric route-map map-name
\end{verbatim}

\textbf{Syntax Description}

- \texttt{metric} \hspace{1cm} Metric associated with a set of destinations for DVMRP reports. It can be a value from 0 to 32. A value of 0 means that the route is not advertised. A value of 32 is equivalent to infinity (unreachable).
- \texttt{list access-list-number} \hspace{1cm} (Optional) Number of an access list. If you specify this argument, only the multicast destinations that match the access list are reported with the configured metric. Any destinations not advertised because of split horizon do not use the configured metric.
- \texttt{protocol} \hspace{1cm} (Optional) Name of unicast routing protocol, such as \texttt{bgp}, \texttt{eigrp}, \texttt{igrp}, \texttt{isis}, \texttt{ospf}, \texttt{rip}, or \texttt{static} or \texttt{dvmrp}.
  
  If you specify these arguments, only routes learned by the specified routing protocol are advertised in DVMRP report messages.
- \texttt{process-id} \hspace{1cm} (Optional) Process ID number of the unicast routing protocol.
- \texttt{dvmrp} \hspace{1cm} (Optional) Allows routes from the DVMRP routing table to be advertised with the configured \texttt{metric} or filtered.
- \texttt{route-map map-name} \hspace{1cm} Unicast routes are subject to route-map conditions before being injected into DVMRP. Route-maps cannot be used for DVMRP routes.

\textbf{Defaults}

No metric is preconfigured. Only directly connected subnets and networks are advertised to neighboring DVMRP routers.

\textbf{Command Modes}

Interface configuration

\textbf{Command History}

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>11.1</td>
<td>The \texttt{route-map} keyword was added.</td>
</tr>
</tbody>
</table>
Usage Guidelines

When PIM is configured on an interface and DVMRP neighbors are discovered, the Cisco IOS software sends DVMRP report messages for directly connected networks. The `ip dvmrp metric` command enables DVMRP report messages for multicast destinations that match the access list. Usually, the metric for these routes is 1. Under certain circumstances, you might want to tailor the metric used for various unicast routes. This command lets you configure the metric associated with a set of destinations for Report messages sent out this interface.

You can use the `access-list-number` argument in conjunction with the `protocol process-id` arguments to selectively list the destinations learned from a given routing protocol.

To display DVMRP activity, use the `debug ip dvmrp` command.

Examples

The following example connects a PIM cloud to a DVMRP cloud. Access list 1 permits the sending of DVMRP reports to the DVMRP routers advertising all sources in the 198.92.35.0 network with a metric of 1. Access list 2 permits all other destinations, but the metric of 0 means that no DVMRP reports are sent for these destinations.

```
access-list 1 permit 198.92.35.0 0.0.0.255
access-list 1 deny 0.0.0.0 255.255.255.255
access-list 2 permit 0.0.0.0 255.255.255.255
interface tunnel 0
 ip dvmrp metric 1 list 1
 ip dvmrp metric 0 list 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip dvmrp accept-filter</code></td>
<td>Configures an acceptance filter for incoming DVMRP reports.</td>
</tr>
</tbody>
</table>
ip dvmrp metric-offset

To change the metrics of advertised DVMRP routes and thus favor or not favor a certain route, use the `ip dvmrp metric-offset` interface configuration command. To restore the default values, use the `no` form of this command.

```
ip dvmrp metric-offset [in | out] increment
no ip dvmrp metric-offset
```

### Syntax Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>(Optional) The <code>increment</code> value is added to incoming DVMRP reports and is reported in mrinfo replies. The default for <code>in</code> is 1.</td>
</tr>
<tr>
<td>out</td>
<td>(Optional) The <code>increment</code> value is added to outgoing DVMRP reports for routes from the DVMRP routing table. The default for <code>out</code> is 0.</td>
</tr>
<tr>
<td>increment</td>
<td>Value added to the metric of a DVMRP route advertised in a Report message.</td>
</tr>
</tbody>
</table>

### Defaults

If neither `in` nor `out` is specified, `in` is the default.

The default for `in` is 1.

The default for `out` is 0.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use this command to influence which routes are used, as you prefer. The DVMRP metric is in hop count.

### Examples

The following example adds 10 to the incoming DVMRP reports:

```
ip dvmrp metric-offset 10
```
To configure an interpacket delay of a DVMRP report, use the `ip dvmrp output-report-delay` interface configuration command. To restore the default values, use the `no` form of this command.

```
ip dvmrp output-report-delay milliseconds [burst]
no ip dvmrp output-report-delay milliseconds [burst]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>milliseconds</code></td>
<td>Number of milliseconds that elapse between transmissions of a set of DVMRP report packets. The number of packets in the set is determined by the <code>burst</code> argument. The default number of milliseconds is 100 milliseconds.</td>
</tr>
<tr>
<td><code>burst</code></td>
<td>(Optional) The number of packets in the set being transmitted. The default is 2 packets.</td>
</tr>
</tbody>
</table>

### Defaults

- `milliseconds` is 100 milliseconds
- `burst` is 2 packets

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The delay is the number of milliseconds that elapse between transmissions of sets of packets that constitute a report. The number of packets in the set is determined by the `burst` value.

You might want to change the default values, depending on the CPU and buffering of the mrouted machine.

### Examples

The following example sets the interpacket delay to 200 milliseconds and the burst size to 3 packets. Therefore, at the periodic DVMRP report interval, if 6 packets are built, 3 packets will be sent, then a delay of 200 milliseconds occurs, then the next 3 packets are sent.

```
ip dvmrp output-report-delay 200 3
```
ip dvmrp reject-non-pruners

To configure the router so that it will not peer with a DVMRP neighbor if that neighbor does not support DVMRP pruning or grafting, use the `ip dvmrp reject-non-pruners` interface configuration command. To disable the function, use the `no` form of this command.

```
ip dvmrp reject-non-pruners
no ip dvmrp reject-non-pruners
```

Syntax Description
This command has no arguments or keywords.

Defaults
Disabled

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
By default, the router accepts all DVMRP neighbors as peers, regardless of their DVMRP capability or lack thereof.

Use this command to prevent a router from peering with a DVMRP neighbor if that neighbor does not support DVMRP pruning or grafting. If the router receives a DVMRP Probe or Report message without the Prune-Capable flag set, the router logs a syslog message and discards the message.

Note that this command prevents peering with neighbors only. If there are any non-pruning routers multiple hops away (downstream toward potential receivers) that are not rejected, then a non-pruning DVMRP network might still exist.

Examples
The following example configures the router not to peer with DVMRP neighbors that do not support pruning or grafting:

```
ip dvmrp reject-non-pruners
```
To change the number of DVMRP routes allowed before a syslog warning message is issued, use the `ip dvmrp routehog-notification` global configuration command. To restore the default value, use the `no` form of this command.

```
ip dvmrp routehog-notification route-count
no ip dvmrp routehog-notification
```

**Syntax Description**

| `route-count` | Number of routes allowed before a syslog message is triggered. The default is 10,000 routes. |

**Defaults**

10,000 routes

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command configures how many DVMRP routes are accepted on each interface within an approximate one-minute interval before a syslog message is issued, warning that there might be a route surge occurring. The warning is typically used to detect quickly when people have misconfigured their routers to inject a large number of routes into the MBONE.

The `show ip igmp interface` command displays a running count of routes. When the count is exceeded, an “*** ALERT ***” is appended to the line.

**Examples**

The following example lowers the threshold to 8000 routes:

```
ip dvmrp routehog-notification 8000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp interface</code></td>
<td>Displays multicast-related information about an interface.</td>
</tr>
</tbody>
</table>
ip dvmrp route-limit

To change the limit on the number of DVMRP routes that can be advertised over an interface enabled to run DVMRP, use the ip dvmrp route-limit global configuration command. To configure no limit, use the no form of this command.

```
 ip dvmrp route-limit count
 no ip dvmrp route-limit
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>count</th>
<th>Number of DVMRP routes that can be advertised. The default is 7000 routes.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>7000 routes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Global configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

| Usage Guidelines   | Interfaces enabled to run DVMRP include a DVMRP tunnel, an interface where a DVMRP neighbor has been discovered, or an interface configured to run ip dvmrp unicast-routing. The ip dvmrp route-limit command is automatically generated to the configuration file when at least one interface is enabled for multicast routing. This command is necessary to prevent misconfigured ip dvmrp metric commands from causing massive route injection into the multicast backbone (MBONE). |

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example changes the limit to 5000 DVMRP routes allowed to be advertised:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip dvmrp route-limit 5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip dvmrp unicast-routing</td>
<td>Enables DVMRP unicast routing on an interface.</td>
</tr>
</tbody>
</table>
ip dvmrp summary-address

To configure a DVMRP summary address to be advertised out the interface, use the `ip dvmrp summary-address` interface configuration command. To remove the summary address, use the `no` form of this command.

```
ip dvmrp summary-address address mask [metric value]
no ip dvmrp summary-address address mask [metric value]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address</code></td>
<td>Summary IP address that is advertised instead of the more specific route.</td>
</tr>
<tr>
<td><code>mask</code></td>
<td>Mask on the summary IP address.</td>
</tr>
<tr>
<td><code>metric value</code></td>
<td>(Optional) Metric that is advertised with the summary address. The default is 1.</td>
</tr>
</tbody>
</table>

**Defaults**

`metric value` is 1

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If there is at least a single, more specific route in the unicast routing table that matches the specified `address` and `mask`, the summary is advertised. Routes in the DVMRP routing table are not candidates for summarization.

When the `metric` keyword is specified, the summary is advertised with that metric `value`.

Multiple summary address can be configured on an interface. When multiple overlapping summary addresses are configured on an interface, the one with the longest mask takes preference.

**Examples**

The following example configures the DVMRP summary address 171.69.0.0 to be advertised out the interface:

```
ip dvmrp summary-address 171.69.0.0 255.255.0.0 metric 1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dvmrp auto-summary</td>
<td>Enables DVMRP auto-summarization if it was disabled.</td>
</tr>
</tbody>
</table>
**ip dvmrp unicast-routing**

To enable DVMRP unicast routing on an interface, use the `ip dvmrp unicast-routing` interface configuration command. To disable the feature, use the `no` form of this command.

```
ip dvmrp unicast-routing
no ip dvmrp unicast-routing
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

Disabled

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Enabling DVMRP unicast routing means that routes in DVMRP Report messages are cached by the router in a DVMRP routing table. When PIM is running, these routes may get preference over routes in the unicast routing table. This allows PIM to run on the MBONE topology when it is different from the unicast topology.

DVMRP unicast routing can run on all interfaces, including GRE tunnels. On DVMRP tunnels, it runs by virtue of DVMRP multicast routing. This command does not enable DVMRP multicast routing among Cisco routers. However, if there is a DVMRP-capable multicast router, the Cisco router will do PIM/DVMRP multicast routing interaction.

**Examples**

The following example enables DVMRP unicast routing:

```
ip dvmrp unicast-routing
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dvmrp route-limit</td>
<td>Changes the limit on the number of DVMRP routes that can be advertised over an interface enabled to run DVMRP.</td>
</tr>
</tbody>
</table>
**ip igmp access-group**

To control the multicast groups that hosts on the subnet serviced by an interface can join, use the *ip igmp access-group* interface configuration command. To disable groups on an interface, use the *no* form of this command.

```
ip igmp access-group access-list-number version
no ip igmp access-group access-list-number version
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list-number</td>
<td>Number of a standard IP access list. This can be a number from 1 to 99.</td>
</tr>
<tr>
<td>version</td>
<td>Changes IGMP version. Default is version 2.</td>
</tr>
</tbody>
</table>

**Defaults**

All groups are allowed on an interface.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

In the following example, hosts serviced by Ethernet interface 0 can join the group 225.2.2.2 only:

```
access-list 1 225.2.2.2 0.0.0.0
interface ethernet 0
ip igmp access-group 1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp join-group</td>
<td>Causes the router to join a multicast group.</td>
</tr>
</tbody>
</table>
ip igmp helper-address

To cause the system to forward all IGMP Host Reports and Leave messages received on the interface to the specified IP address, use the `ip igmp helper-address` interface configuration command. To disable such forwarding, use the `no` form of this command.

```
ip igmp helper-address ip-address

no ip igmp helper-address
```

**Syntax Description**

`ip-address` IP address to which IGMP Host Reports and Leave messages are forwarded. Specify the IP address of an interface on the central router.

**Defaults**

Disabled

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2 F</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command and the `ip pim neighbor-filter` command together enable stub multicast routing. The IGMP Host Reports and Leave messages are forwarded to the IP address specified. The reports are resent out the next-hop interface toward the IP address, with that interface’s source address. This command enables a sort of “dense-mode” Join, allowing stub sites not participating in PIM to indicate membership in IP multicast groups.

**Examples**

The following example enables stub multicast routing on Router A, which has an outgoing interface with IP address 10.0.0.1. Router B is a central router with an incoming interface with address 10.0.0.2. Access list 1 filters PIM messages from the source (stub Router A).

**Router A**

```
ip multicast-routing
ip pim dense-mode
ip igmp helper-address 10.0.0.2
```

**Router B**

```
ip multicast-routing
ip pim dense-mode : or ip pim sparse-mode
ip pim neighbor-filter 1
access-list 1 deny 10.0.0.1
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ip pim neighbor-filter</strong></td>
<td>Prevents a router from participating in PIM (for example, to configure stub multicast routing).</td>
</tr>
</tbody>
</table>
ip igmp join-group

To have the router join a multicast group, use the `ip igmp join-group` interface configuration command. To cancel membership in a multicast group, use the `no` form of this command.

```
 ip igmp join-group group-address
 no ip igmp join-group group-address
```

**Syntax Description**

<table>
<thead>
<tr>
<th>group-address</th>
<th>Address of the multicast group. This is a multicast IP address in four-part, dotted notation.</th>
</tr>
</thead>
</table>

**Defaults**

No multicast group memberships are predefined.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

IP packets that are addressed to the group address are passed to the IP client process in the Cisco IOS software.

If all the multicast-capable routers and access servers that you administer are members of a multicast group, pinging that group causes all routers to respond. This can be a useful administrative and debugging tool.

Another reason to have a router join a multicast group is when other hosts on the network have a bug in IGRP that prevents them from correctly answering IGMP queries. Having the router join the multicast group causes upstream routers to maintain multicast routing table information for that group and keep the paths for that group active.

**Examples**

In the following example, the router joins multicast group 225.2.2.2:

```
ip igmp join-group 225.2.2.2
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ip igmp access-group</strong></td>
<td>Controls the multicast groups that hosts on the subnet serviced by an interface can join.</td>
</tr>
<tr>
<td><strong>ping (privileged)</strong></td>
<td>Diagnoses basic network connectivity on Apollo, AppleTalk, Connectionless Network Service (CLNS), DECnet, IP, Novell IPX, VINES, or XNS networks.</td>
</tr>
<tr>
<td><strong>ping (user)</strong></td>
<td>Diagnoses basic network connectivity on AppleTalk, CLNS, IP, Novell, Apollo, VINES, DECnet, or XNS networks.</td>
</tr>
</tbody>
</table>
To configure the frequency at which the Cisco IOS software sends IGMP host-query messages, use the `ip igmp query-interval` interface configuration command. To return to the default frequency, use the `no` form of this command.

```
ip igmp query-interval seconds

no ip igmp query-interval
```

### Syntax Description

```
seconds Frequency, in seconds, at which to transmit IGMP host-query messages. The can be a number from 0 to 65535. The default is 60 seconds.
```

### Defaults

60 seconds

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Multicast routers send host membership query messages (host-query messages) to discover which multicast groups have members on the router’s attached networks. Hosts respond with IGMP report messages indicating that they wish to receive multicast packets for specific groups (that is, indicating that the host wants to become a member of the group). Host-query messages are addresses to the all-hosts multicast group, which has the address 224.0.0.1, and have an IP TTL value of 1.

The designated router for a LAN is the only router that sends IGMP host-query messages.

- For IGMP Version 1, the designated router is elected according to the multicast routing protocol that runs on the LAN.
- For IGMP Version 2, the designated querier is the lowest IP-addressed multicast router on the subnet.

If the router hears no queries for the timeout period (controlled by the `ip igmp query-timeout` command), it becomes the querier.

**Note**

Changing this value may severely impact multicast forwarding.

### Examples

The following example changes the frequency at which the designated router sends IGMP host-query messages to 2 minutes:

```
interface tunnel 0
ip igmp query-interval 120
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip pim query-interval</code></td>
<td>Configures the frequency of PIM router-query messages.</td>
</tr>
<tr>
<td><code>show ip igmp groups</code></td>
<td>Displays the multicast groups that are directly connected to the router and that were learned through IGMP.</td>
</tr>
</tbody>
</table>
**ip igmp query-max-response-time**

To configure the maximum response time advertised in IGMP queries, use the `ip igmp query-max-response-time` interface configuration command. To restore the default value, use the `no` form of this command.

```
ip igmp query-max-response-time seconds

no ip igmp query-max-response-time
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>Maximum response time, in seconds, advertised in IGMP queries. The default value is 10 seconds.</td>
</tr>
</tbody>
</table>

**Defaults**

10 seconds

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is valid only when IGMP Version 2 is running.

This command controls how long the responder has to respond to an IGMP Query message before the router deletes the group. Configuring a value less than 10 seconds enables the router to prune groups faster.

**Note**

If the hosts do not respond fast enough, they might be pruned when you don’t want them to be. Therefore, the hosts must know to respond faster than 10 seconds (or the value you configure).

**Examples**

The following example configures a maximum response time of 8 seconds:

```
ip igmp query-max-response-time 8
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip pim query-interval</code></td>
<td>Configures the frequency of PIM router-query messages.</td>
</tr>
<tr>
<td><code>show ip igmp groups</code></td>
<td>Displays the multicast groups that are directly connected to the router and that were learned through IGMP.</td>
</tr>
</tbody>
</table>
ip igmp query-timeout

To configure the timeout time before the router takes over as the querier for the interface, after the previous querier has stopped querying, use the `ip igmp query-timeout` interface configuration command. To restore the default value, use the `no` form of this command.

```
ip igmp query-timeout seconds
no ip igmp query-timeout
```

### Syntax Description

| seconds       | Number of seconds that the router waits after the previous querier has stopped querying and before it takes over as the querier. |

### Defaults

2 times the query interval

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command requires IGMP Version 2.

By default, the router waits twice the query interval specified by the `ip igmp query-interval` command, after which, if it has heard no queries, it becomes the querier. By default, the `ip igmp query-interval` defaults to 30 seconds, which means the `ip igmp query-timeout` defaults to 60 seconds.

### Examples

The following example configures the router to wait 30 seconds from the time it received the last query before it takes over as the querier for the interface:

```
ip igmp query-timeout 30
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp query-interval</code></td>
<td>Configures the frequency at which the Cisco IOS software sends IGMP</td>
</tr>
<tr>
<td><code>ip igmp query-timeout</code></td>
<td>host-query messages.</td>
</tr>
</tbody>
</table>
ip igmp static-group

To configure the router to be a statically connected member of the specified group on the interface, use the `ip igmp static-group` interface configuration command. To remove the router as a member of the group, use the `no` form of this command.

```
 ip igmp static-group group-address
 no ip igmp static-group group-address
```

**Syntax Description**

- `group-address`: IP multicast group address of a group that the router is a member of.

**Defaults**

Disabled

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When this command is configured, packets to the group are fast-switched out this interface, provided that packets were received on the correct RPF interface. This is unlike configuring the `ip igmp join-group` command, which also causes packets to be passed up to the process level.

If the `ip igmp join-group` command is configured for the same group address as the `ip igmp static-group` command, the `ip igmp join-group` command takes precedence, and the group behaves like a locally joined group.

**Examples**

The following example configures 239.100.100.101 on Ethernet interface 0:

```
 interface ethernet 0
 ip igmp static-group 239.100.100.101
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp join-group</code></td>
<td>Causes the router to join a multicast group.</td>
</tr>
</tbody>
</table>
ip igmp version

To configure which version of IGMP the router uses, use the **ip igmp version** interface configuration command. To restore the default value, use the **no** form of this command.

```
ip igmp version {2 | 1}
no ip version
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IGMP Version 2.</td>
</tr>
<tr>
<td>1</td>
<td>IGMP Version 1.</td>
</tr>
</tbody>
</table>

**Defaults**

Version 2

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

All routers on the subnet must support the same version. The router does not automatically detect Version 1 routers and switch to Version 1 as did earlier releases of the Cisco IOS software. However, a mix of IGMP Version 1 and Version 2 hosts on the subnet is acceptable. IGMP Version 2 routers will always work correctly in the presence of IGMP Version 1 hosts.

Some commands require IGMP Version 2, such as the **ip igmp query-max-response-time** and **ip igmp query-timeout** commands.

**Examples**

The following example configures the router to use IGMP Version 1:

```
ip igmp version 1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp query-max-response-time</td>
<td>Configures the maximum response time advertised in IGMP queries.</td>
</tr>
<tr>
<td>ip igmp query-timeout</td>
<td>Configures the timeout time before the router takes over as the querier for the interface, after the previous querier has stopped querying.</td>
</tr>
<tr>
<td>show ip igmp groups</td>
<td>Displays the multicast groups that are directly connected to the router and that were learned through IGMP.</td>
</tr>
<tr>
<td>show ip igmp interface</td>
<td>Displays multicast-related information about an interface.</td>
</tr>
</tbody>
</table>
### ip mroute

To configure a multicast static route (mroute), use the `ip mroute` global configuration command. To remove the route, use the `no` form of this command.

```
ip mroute source mask [protocol as-number] {rpf-address | type number} [distance]
no ip mroute source mask [protocol as-number] {rpf-address | type number} [distance]
```

#### Syntax Description

- **source**: IP address of the multicast source.
- **mask**: Mask on the IP address of the multicast source.
- **protocol** *(Optional)*: Unicast routing protocol that you are using.
- **as-number** *(Optional)*: Autonomous system number of the routing protocol you are using, if applicable.
- **rpf-address**: Incoming interface for the mroute. If the Reverse Path Forwarding address `rpf-address` is a PIM neighbor, PIM Joins, Grafts, and Prunes are sent to it. The `rpf-address` can be a host IP address of a directly connected system or a network/subnet number. When it is a route, a recursive lookup is done from the unicast routing table to find a directly connected system. If `rpf-address` is not specified, the interface `type number` is used as the incoming interface.
- **type number**: Interface type and number for the mroute.
- **distance** *(Optional)*: Determines whether a unicast route, a DVMRP route, or a static mroute should be used for the RPF lookup. The lower distances have better preference. If the static mroute has the same distance as the other two RPF sources, the static mroute will take precedence. The default is 0.

#### Defaults

```
distance: 0
```

#### Command Modes

Global configuration

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines

This command allows you to statically configure where multicast sources are located (even though the unicast routing table says something different).

When a source range is specified, the `rpf-address` applies only to those sources.
The following example configures all sources via a single interface (in this case, a tunnel):
```
ip mroute 0.0.0.0 0.0.0.0 tunnel0
```

The following example configures all specific sources within a network number are reachable through 172.30.10.13:
```
ip mroute 172.16.0.0 255.255.0.0 172.30.10.13
```

The following example causes this multicast static route to take effect if the unicast routes for any given destination go away:
```
ip mroute 0.0.0.0 0.0.0.0 serial0 200
```
**ip multicast boundary**

To configure an administratively scoped boundary, use the `ip multicast boundary` interface configuration command. To remove the boundary, use the `no` form of this command.

```
ip multicast boundary access-list-number
no ip multicast boundary
```

**Syntax Description**

- `access-list-number` Standard IP access list number identifying an access list that controls the range of group addresses affected by the boundary.

**Defaults**

There is no boundary.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You might set up a boundary to keep multicast packets from being forwarded.

**Examples**

The following example sets up a boundary for all administratively scoped addresses:

```
access-list 1 deny 239.0.0.0 0.255.255.255
access-list 1 permit 224.0.0.0 15.255.255.255
interface ethernet 0
 ip multicast boundary 1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list (IP standard)</td>
<td>Defines a standard IP access list.</td>
</tr>
</tbody>
</table>
ip multicast cache-headers

To allocate a circular buffer to store IP multicast packet headers that the router receives, use the `ip multicast cache-headers` global configuration command. To remove the buffer, use the `no` form of this command.

```
ip multicast cache-headers
no ip multicast cache-headers
```

Syntax Description

This command has no arguments or keywords.

Defaults

Disabled

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can store IP multicast packet headers in a cache and then display them to determine the following:

- Who is sending IP multicast packets to what groups
- Inter-packet delay
- Duplicate IP multicast packets (if any)
- Multicast forwarding loops in your network (if any)
- Scope of the group
- UDP port numbers
- Packet length

Note

This feature allocates a circular buffer of approximately 32 kilobytes. Do not configure this feature if you are low on memory.

Use the `show ip mpacket` command to display the buffer.

Examples

The following example allocates a buffer to store IP multicast packet headers:

```
ip multicast cache-headers
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip mpacket</td>
<td>Displays the contents of the circular cache-header buffer.</td>
</tr>
</tbody>
</table>
ip multicast helper-map

To allow IP multicast routing in a multicast-capable internetwork between two broadcast-only internetworks, use the `ip multicast helper-map` interface configuration command. To disable this function, use the `no` form of this command.

```
ip multicast helper-map {group-address | broadcast} {broadcast-address | multicast-address} extended-access-list-number
no ip multicast helper-map {group-address | broadcast} {broadcast-address | multicast-address} extended-access-list-number
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group-address</code></td>
<td>Multicast group address of traffic to be converted to broadcast traffic. Use this with the <code>broadcast-address</code>.</td>
</tr>
<tr>
<td><code>broadcast</code></td>
<td>Specifies the traffic is being converted from broadcast to multicast. Use this with the <code>multicast-address</code>.</td>
</tr>
<tr>
<td><code>broadcast-address</code></td>
<td>Address to which broadcast traffic is sent. Use this with the <code>group-address</code>.</td>
</tr>
<tr>
<td><code>multicast-address</code></td>
<td>Specifies the IP multicast address to which the converted traffic is directed. Use this with the <code>broadcast</code> keyword.</td>
</tr>
<tr>
<td><code>extended-access-list-number</code></td>
<td>IP extended access list that controls which broadcast packets are translated, based on the UDP port number.</td>
</tr>
</tbody>
</table>

**Defaults**

No conversion between broadcast and multicast occurs.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When a multicast-capable internetwork is between two broadcast-only internetworks, you can convert broadcast traffic to multicast at the first hop router, and convert it back to broadcast at the last hop router before delivering the packets to the broadcast clients. Thus, you can take advantage of the multicast capability of the intermediate multicast internetwork. This feature prevents unnecessary replication at the intermediate routers and allows multicast fast switching in the multicast internetwork.

You must configure `ip directed-broadcast` on any interface where `ip multicast helper-map` is configured.

**Note**

On the last hop router, the `ip multicast helper-map` command introduces the `ip igmp join-group` command on that interface. That command must remain for this feature to work. If you remove the `ip igmp join-group` command, the feature fails. You can move the `ip igmp join-group` command to another interface on the same router.
The following example illustrates how a helper address on two routers converts from broadcast to multicast and back to broadcast.

The configuration on the first hop router converts a broadcast stream arriving at incoming interface Ethernet interface 0 destined to UDP port 4000 to a multicast stream. The access list denies other traffic from being forwarded into the multicast cloud. The traffic is sent to group address 224.5.5.5. Because fast switching does not perform such a conversion, the `ip forward-protocol` command causes the proper process level to perform the conversion.

The configuration on the last hop router converts the multicast stream at incoming interface Ethernet interface 1 back to broadcast. Again, all multicast traffic emerging from the multicast cloud is not supposed to be converted to broadcast, only the traffic destined for UDP port 4000.

**First Hop Router**

```plaintext
interface ethernet 0
 ip directed-broadcast
 ip multicast helper-map broadcast 224.5.5.5 120
 ip pim dense-mode
 !
 access-list 120 permit any any udp 4000
 access-list 120 deny any any udp
 ip forward-protocol udp 4000
```

**Last Hop Router**

```plaintext
interface ethernet 1
 ip directed-broadcast
 ip multicast helper-map 224.5.5.5 178.21.34.255 135
 ip pim dense-mode
 !
 access-list 135 permit any any udp 4000
 access-list 135 deny any any udp
 ip forward-protocol udp 4000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip directed-broadcast</code></td>
<td>Enables the translation of directed broadcast to physical broadcasts.</td>
</tr>
<tr>
<td><code>ip forward-protocol</code></td>
<td>Specifies which protocols and ports the router forwards when forwarding broadcast packets.</td>
</tr>
</tbody>
</table>
ip multicast rate-limit

To control the rate a sender from the source-list can send to a multicast group in the group-list, use the *ip multicast rate-limit* interface configuration command. To remove the control, use the *no* form of this command.

```
ip multicast rate-limit {in | out} [video | whiteboard] [group-list access-list] [source-list access-list] kbps
```

```
no ip multicast rate-limit {in | out} [video | whiteboard] [group-list access-list] [source-list access-list] kbps
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>Only packets at the rate of <em>kbps</em> or slower are accepted on the interface.</td>
</tr>
<tr>
<td>out</td>
<td>Only a maximum of <em>kbps</em> will be transmitted on the interface.</td>
</tr>
<tr>
<td>video</td>
<td>(Optional) Rate limiting is performed based on the UDP port number used by video traffic. Video traffic is identified by consulting the sdr cache.</td>
</tr>
<tr>
<td>whiteboard</td>
<td>(Optional) Rate limiting is performed based on the UDP port number used by whiteboard traffic. Whiteboard traffic is identified by consulting the sdr cache.</td>
</tr>
<tr>
<td>group-list access-list</td>
<td>(Optional) Specifies the access list number that controls which multicast groups are subject to the rate limit.</td>
</tr>
<tr>
<td>source-list access-list</td>
<td>(Optional) Specifies the access list number that controls which senders are subject to the rate limit.</td>
</tr>
<tr>
<td>kbps</td>
<td>Kilobits-per-second transmission rate. Any packets sent at greater than this value are silently discarded. If this command is configured, the default value is 0, meaning that no traffic is permitted. Therefore, set this to a positive value if you use this command.</td>
</tr>
</tbody>
</table>

**Defaults**

If this command is not configured, there is no rate limit.

If this command is configured, *kbps* defaults to 0, meaning that no traffic is permitted.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

This command limits the rate with which IP multicast traffic can be received or sent across an interface. The **in** and **out** keywords apply the command to IP multicast packets being received (**in**) or sent (**out**) on the interface. Rate-limiting can be configured simultaneously for incoming and outgoing packets.

The **kbps** keyword selects the rate in kilobits per second to which matching traffic will be limited. The default value for **kbps** is 0, in which case all IP multicast packets matched by this command will be dropped. The **ip multicast rate-limit** command then works like an access list filtering out matching packets.

The **group-list access-list** and **source-list access-list** keywords select a set of routing table entries corresponding to a specific group and source (G,S) or a set of routing table entries with a specific group and coming from any source (G,*) to which the command is to be applied. If no such argument is given, the command limit will be applied to the aggregate amount of IP multicast traffic coming in or going out the interface, if the interface does not have a more specific **ip multicast rate-limit** command that has the **group-list** or **source-list** applied to it. If the **group-list** or **source-list** argument is specified, the configured limit is applied to each of the matching G, S and G,* multicast states independently. The configured limit in the command does not apply to the aggregate amount of traffic matched by the command, but to each covered multicast route individually.

The **video** and **whiteboard** keywords contain rate-limiting to video or whiteboard packets only. These keywords can only be entered in sessions in which the media (video or whiteboard) has been announced via Session Description Protocol (SDP). The **ip sap listen** command must also be enabled so that the port number can be obtained from the SAP cache. If the **ip sap listen** command is not enabled, or the group address is not in the Session Announcement Protocol (SAP) cache, no rate-limiting is done for the group.

Rate-limiting can be applied only once for each direction (incoming or outgoing) on an interface; however, multicast route limiting can be specified more than once on each direction on an interface. If a multicast route state is matched by more than one configured **ip multicast rate-limit** command, the commands will be searched and the first matching criteria will be used for the multicast route state. The order in which the configured **ip multicast rate-limit** commands are searched for matching a multicast route is the order in which the **ip multicast rate-limit** commands are entered.

Examples

In the following example, packets to any group from sources in network 171.69.0.0 will have their packets rate-limited to 64 kbps:

```plaintext
interface serial 0
 ip multicast rate-limit out group-list 1 source-list 2 64
 access-list 1 permit 0.0.0.0 255.255.255.255
 access-list 2 permit 171.69.0.0 0.0.255.255
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip sdr listen</td>
<td>Enables the Cisco IOS software to listen to session directory advertisements.</td>
</tr>
</tbody>
</table>
ip multicast ttl-threshold

To configure the time-to-live (TTL) threshold of packets being forwarded out an interface, use the `ip multicast ttl-threshold` interface configuration command. To return to the default TTL threshold, use the `no` form of this command.

```
ip multicast ttl-threshold ttl-value
no ip multicast ttl-threshold [ttl-value]
```

**Syntax Description**

<table>
<thead>
<tr>
<th><code>ttl-value</code></th>
<th>Time-to-live value, in hops. It can be a value from 0 to 255. The default value is 0, which means that all multicast packets are forwarded out the interface.</th>
</tr>
</thead>
</table>

**Defaults**

0, which means that all multicast packets are forwarded out the interface.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Only multicast packets with a TTL value greater than the threshold are forwarded out the interface.

You should configure the TTL threshold only on border routers. Conversely, routers on which you configure a TTL threshold value automatically become border routers.

This command replaces the `ip multicast-threshold` command, which is obsolete.

**Examples**

The following example sets the TTL threshold on a border router to 200, which is a very high value. This means that multicast packets must have a TTL greater than 200 in order to be forwarded out this interface. Multicast applications generally set this value well below 200. Therefore, setting a value of 200 means that no packets will be forwarded out the interface.

```
interface tunnel 0
ip multicast ttl-threshold 200
```
ip multicast use-functional

To enable the mapping of IP multicast addresses to the Token Ring functional address 0xc000.0004.0000, use the ip multicast use-functional interface configuration command. To disable the function, use the no form of this command.

    ip multicast use-functional
    no ip multicast use-functional

Syntax Description
This command has no arguments or keywords.

Defaults
IP multicast address are mapped to the MAC-layer address 0xFFFF.FFFF.FFFF.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command is accepted only on a Token Ring interface.

Neighboring devices on the Token Ring on which this feature is used should also use the same functional address for IP multicast traffic.

Because there are a limited number of Token Ring functional addresses, it is possible there are other protocols assigned to the Token Ring functional address 0xc000.0004.0000. Therefore, not every frame sent to the functional address is necessarily an IP multicast frame.

Examples
The following example configures any IP multicast packets going out Token Ring interface 0 to be mapped to MAC address 0xc000.0004.0000:

    interface token 0
    ip address 1.1.1.1 255.255.255.0
    ip pim dense-mode
    ip multicast use-functional
**ip pim**

To enable PIM on an interface, use the `ip pim` interface configuration command. To disable PIM on the interface, use the `no` form of this command.

```
ip pim {dense-mode | sparse-mode | sparse-dense-mode}
```

```no ip pim```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dense-mode</code></td>
<td>Enables dense mode of operation.</td>
</tr>
<tr>
<td><code>sparse-mode</code></td>
<td>Enables sparse mode of operation.</td>
</tr>
<tr>
<td><code>sparse-dense-mode</code></td>
<td>The interface is treated in the mode in which the group operates.</td>
</tr>
</tbody>
</table>

Defaults

IP multicast routing is disabled on all interfaces.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>11.1</td>
<td>The <code>sparse-dense-mode</code> keyword was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enabling PIM on an interface also enables IGMP operation on that interface. An interface can be configured to be in dense mode, sparse mode, or sparse-dense mode. The mode describes how the Cisco IOS software populates its multicast routing table and how the software forwards multicast packets it receives from its directly connected LANs. In populating the multicast routing table, dense-mode interfaces are always added to the table. Sparse-mode interfaces are added to the table only when periodic join messages are received from downstream routers, or there is a directly connected member on the interface.

Dense Mode

Initially, a dense-mode interface forwards multicast packets until the router determines that there are group members or downstream routers, or until a prune message is received from a downstream router. Then, the dense-mode interface periodically forwards multicast packets out the interface until the same conditions occur. Dense mode assumes that there are multicast group members present. Dense-mode routers never send a join message. They do send prune messages as soon as they determine they have no members or downstream PIM routers. A dense-mode interface is subject to multicast flooding by default.

Sparse Mode

A sparse-mode interface is used for multicast forwarding only if a join message is received from a downstream router or if there are group members directly connected to the interface. Sparse mode assumes that there are no other multicast group members present. When sparse-mode routers want to
join the shared path, they periodically send join messages toward the rendezvous point (RP). When sparse-mode routers want to join the source path, they periodically send join messages toward the source; they also send periodic prune messages toward to RP to prune the shared path.

Sparse-Dense Mode

An alternative to choosing just dense mode or just sparse mode is to run PIM in a single region in sparse mode for some groups and dense mode for other groups.

In sparse-dense mode, if the group is in dense mode, the interface will be treated as dense mode. If the group is in sparse mode, the interface will be treated in sparse mode. The group is “sparse” if the router knows about an RP for that group.

When an interface is treated in dense mode, it is populated in a multicast routing table’s outgoing integrated list when either

- There are members or DVMRP neighbors on the interface.
- Any of the PIM neighbors on the interface have not pruned for the group.

When an interface is treated in sparse mode, it is populated in a multicast routing table’s outgoing interface when either of the following is true:

- There are members or DVMRP neighbors on the interface.
- A PIM neighbor on the interface has received an explicit Join.

Examples

The following example enables sparse-mode PIM on tunnel interface 0 and sets the address of the RP router to 226.0.0.8:

```console
ip pim rp-address 226.0.0.8
interface tunnel 0
  ip pim sparse-mode
```

The following example enables dense-mode PIM on Ethernet interface 1:

```console
interface ethernet 1
  ip pim dense-mode
```

The following example enables sparse-dense mode:

```console
interface ethernet 1
  ip pim sparse-dense-mode
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip multicast-routing</td>
<td>Enables IP multicast routing or multicast distributed switching.</td>
</tr>
<tr>
<td>ip pim rp-address</td>
<td>Configures the address of a PIM RP for a particular group.</td>
</tr>
<tr>
<td>show ip pim interface</td>
<td>Displays information about interfaces configured for PIM.</td>
</tr>
</tbody>
</table>
ip pim accept-rp

To configure a router to accept Joins or Prunes destined for a specified RP and for a specific list of groups, use the `ip pim accept-rp` global configuration command. To remove that check, use the `no` form of this command.

```
ip pim accept-rp {address | auto-rp} [group-access-list-number]
no ip pim accept-rp {ip-address | auto-rp} [group-access-list-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address</code></td>
<td>RP address of the RP allowed to send Join messages to groups in the range specified by the group access list.</td>
</tr>
<tr>
<td><code>auto-rp</code></td>
<td>Join and Register messages are accepted only for RPs that are in the Auto-RP cache.</td>
</tr>
<tr>
<td><code>group-access-list-number</code></td>
<td>(Optional) Access list that defines which groups are subject to the check.</td>
</tr>
</tbody>
</table>

Defaults

Disabled, so all Join messages and Prune messages are processed.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command causes the router to accept only (*,G) Join messages destined for the specified RP address. Additionally, the group address must be in the range specified by the access list.

When `address` is one of the system’s addresses, the system will be the RP only for the specified group range specified by the access list. When the group address is not in the group range, the RP will not accept Join or Register messages and will respond immediately to Register messages with Register-Stop messages.

Examples

The following example states that the router will accept Join or Prune messages destined for the RP at address 100.1.1.1 for the multicast group 224.2.2.2:

```
ip pim accept-rp 100.1.1.1 3
access-list 3 permit 224.2.2.2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list (IP standard)</td>
<td>Defines a standard IP access list.</td>
</tr>
</tbody>
</table>
ip pim border

To configure the interface to be the PIM domain border, use the `ip pim border` interface configuration command. To remove the border, use the `no` form of this command.

```
ip pim border
no ip pim border
```

Syntax Description

This command has no arguments or keywords.

Defaults

Disabled

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When this command is configured on an interface, no bootstrap message can pass through this border in either direction. This command effectively partitions the network into regions using different bootstrap routers. Other PIM messages can pass the domain border.

Note

This command does not set up multicast boundaries. It only sets up a PIM bootstrap message boundary.

Examples

The following example configures the interface to be the PIM domain border:

```
interface ethernet 1
ip pim border
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim bsr-candidate</td>
<td>Configures the router to announce its candidacy as a BSR.</td>
</tr>
</tbody>
</table>
ip pim bsr-candidate

To configure the router to announce its candidacy as a bootstrap router (BSR), use the `ip pim bsr-candidate` global configuration command. To remove this router as a candidate for being a bootstrap router, use the `no` form of this command.

```
ip pim bsr-candidate type number [hash-mask-length] [priority]
no ip pim bsr-candidate
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type number</code></td>
<td>Interface type and number on this router from which the bootstrap router address is derived, to make it a candidate. This interface must be enabled with PIM.</td>
</tr>
<tr>
<td><code>hash-mask-length</code></td>
<td>(Optional) Length of a mask (32 bits maximum) that is to be ANDed with the group address before the hash function is called. All groups with the same seed hash (correspond) to the same RP. For example, if this value is 24, only the first 24 bits of the group addresses matter. This fact allows you to get one RP for multiple groups.</td>
</tr>
<tr>
<td><code>priority</code></td>
<td>(Optional) Integer from 0 to 255. The bootstrap router with the larger priority is preferred. If the priority values are the same, the router with the larger IP address is the bootstrap router. The default value is 0.</td>
</tr>
</tbody>
</table>

Defaults

Disabled

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command causes the router to send bootstrap messages to all its PIM neighbors, with the designated interface’s address as the BSR address. Each neighbor compares the BSR address with the address it had from previous bootstrap messages (not necessarily received on the same interface). If the current address is the same address or better, it caches the current address and forwards the bootstrap message. Otherwise, it drops the bootstrap message.

This router continues to be the BSR until it receives another candidate BSR’s message saying it has a higher priority (or if the same priority, a higher IP address).

Use this command only in backbone routers that have good connectivity to all parts of the PIM domain. That is, a stub router that relies on an on-demand dialup link to connect to the rest of the PIM domain is not a good candidate BSR.
The following example configures the router’s IP address on Ethernet interface 0 to be a candidate bootstrap router with priority of 10:

```
ip pim bsr-candidate ethernet 0 10
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim border</td>
<td>Configures the interface to be the PIM domain border.</td>
</tr>
<tr>
<td>ip pim rp-candidate</td>
<td>Configures the router to advertise itself as a PIM Version 2 candidate RP to the BSR.</td>
</tr>
<tr>
<td>ip pim send-rp-discovery</td>
<td>Configures the router to be an RP-mapping agent.</td>
</tr>
<tr>
<td>show ip pim bsr</td>
<td>Displays the BSR information.</td>
</tr>
<tr>
<td>show ip pim rp</td>
<td>Displays active RPs that are cached with associated multicast routing entries.</td>
</tr>
</tbody>
</table>
ip pim message-interval

To configure the frequency at which a sparse-mode PIM router sends periodic sparse-mode Join/Prune PIM messages, use the `ip pim message-interval` global configuration command. To return to the default interval, use the `no` form of this command.

```
ip pim message-interval seconds
no ip pim message-interval [seconds]
```

Syntax Description

| seconds | Interval, in seconds, at which periodic sparse-mode Join and Prune PIM messages are sent. It can be a number from 1 to 65535. The default is 60 seconds. |

Defaults

60 seconds

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The join-and-prune message interval should be the same for all routers in the network.

A router is pruned from a group if a Join message is not heard from it in three times the message interval specified by the `seconds` argument. By default, this is 3 minutes.

Note

Changing this value may severely impact multicast forwarding.

Examples

The following example changes the PIM message interval to 90 seconds:

```
ip pim message-interval 90
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp query-interval</code></td>
<td>Configures the frequency at which the Cisco IOS software sends IGMP host-query messages.</td>
</tr>
<tr>
<td><code>ip pim query-interval</code></td>
<td>Configures the frequency of PIM router-query messages.</td>
</tr>
</tbody>
</table>
ip pim minimum-vc-rate

To configure the minimum traffic rate to keep virtual circuits from being idled, use the **ip pim minimum-vc-rate** interface configuration command. To restore the default value, use the **no** form of this command.

 ip pim minimum-vc-rate \(pps \)
 no ip pim minimum-vc-rate

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pps)</td>
<td>Rate, in packets per second, below which a VC is eligible for idling. The default value is 0, which means all VCs are eligible for idling. The range is from 0 to 4294967295.</td>
</tr>
</tbody>
</table>

Defaults

0 pps, which indicates all VCs are eligible for idling.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command applies to an ATM interface only and also requires IP PIM sparse mode.

An idling policy uses the **ip pim vc-count number** to limit the number of VCs created by PIM. When the router stays at or below this number, no idling policy is in effect. When the next VC to be opened will exceed the number, an idling policy is exercised. Any virtual circuits with a traffic rate lower than the **ip pim minimum-vc-rate** are subject to the idling policy, which is described in the section “Limit the Number of Virtual Circuits” in the “Configuring IP Multicast Routing” chapter of the *Network Protocols Configuration Guide, Part 1*.

Examples

The following example configures a minimum rate of 2500 pps over a VC, below which the VC is eligible for idling:

 ip pim minimum-vc-rate 2500

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim vc-count</td>
<td>Changes the maximum number of virtual circuits that PIM can open.</td>
</tr>
</tbody>
</table>
ip pim multipoint-signalling

To enable PIM to open ATM multipoint switched virtual circuits for each multicast group that a receiver joins, use the `ip pim multipoint-signalling` interface configuration command. To disable the feature, use the `no` form of this command.

```
ip pim multipoint-signalling
no ip pim multipoint-signalling
```

Syntax Description

This command has no arguments or keywords.

Defaults

Disabled. All multicast traffic goes to the static map multipoint VC as long as the `atm multipoint-signalling` command is configured.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is accepted only on an ATM interface. It allows optimal multicast trees to be built down to ATM switch granularity. This command can enhance router performance and link utilization because packets are not replicated and sent multiple times over the ATM interface.

Examples

The following example enables PIM to open ATM multipoint switched virtual circuits for each multicast group that is joined:

```
ip pim multipoint-signalling
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm multipoint-signalling</td>
<td>Enables point-to-multipoint signalling to the ATM switch.</td>
</tr>
<tr>
<td>ip pim minimum-vc-rate</td>
<td>Configures the minimum traffic rate to keep virtual circuits from being idled.</td>
</tr>
<tr>
<td>ip pim vc-count</td>
<td>Changes the maximum number of virtual circuits that PIM can open.</td>
</tr>
<tr>
<td>show ip pim vc</td>
<td>Displays ATM virtual circuit status information for multipoint VCs opened by PIM.</td>
</tr>
</tbody>
</table>
ip pim nbma-mode

To configure a multiaccess WAN interface to be in nonbroadcast, multiaccess mode, use the `ip pim nbma-mode` interface configuration command. To disable this function, use the `no` form of this command.

```
ip pim nbma-mode
no ip pim nbma-mode
```

Syntax Description
This command has no arguments or keywords.

Defaults
Disabled

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use this command on Frame Relay, SMDS, or ATM only, especially when these media do not have native multicast available. Do not use this command on multicast-capable LANs such as Ethernet or FDDI.

When this command is configured, each PIM Join message is kept track of in the outgoing interface list of a multicast routing table entry. Therefore, only PIM WAN neighbors that have joined for the group will get packets sent as data link unicasts. This command should only be used when `ip pim sparse-mode` is configured on the interface. This command is not recommended for LANs that have natural multicast capabilities.

Examples
The following example configures an interface to be in nonbroadcast, multiaccess mode:

```
ip pim nbma-mode
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim</td>
<td>Enables PIM on an interface.</td>
</tr>
</tbody>
</table>
ip pim neighbor-filter

To prevent a router from participating in PIM (for example, to configure stub multicast routing), use the `ip pim neighbor-filter` interface configuration command. To remove the restriction, use the `no` form of this command.

```
ip pim neighbor-filter access-list-number
no ip pim neighbor-filter access-list-number
```

Syntax Description

| `access-list-number` | Standard IP access list that denies PIM packets from a source. |

Defaults

Disabled

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example enables stub multicast routing on Router A, which has an outgoing interface with IP address 10.0.0.1. Router B is a central router with an incoming interface with address 10.0.0.2. Access list 1 filters PIM messages from the source (stub Router A).

Router A

```
ip multicast-routing
ip pim dense-mode
ip igmp helper-address 10.0.0.2
```

Router B

```
ip multicast-routing
ip pim dense-mode : or ip pim sparse-mode
ip pim neighbor-filter 1
access-list 1 deny 10.0.0.1
```

Related Commands

<table>
<thead>
<tr>
<th>Command (IP standard)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list (IP standard)</td>
<td>Defines a standard IP access list.</td>
</tr>
<tr>
<td>ip igmp helper-address</td>
<td>Causes the system to forward all IGMP Host Reports and Leave messages received on the interface to the specified IP address.</td>
</tr>
</tbody>
</table>
ip pim query-interval

To configure the frequency of PIM router-query messages, use the `ip pim query-interval` interface configuration command. To return to the default interval, use the `no` form of this command.

```
ip pim query-interval seconds
no ip pim query-interval [seconds]
```

Syntax Description

- `seconds` Interval, in seconds, at which periodic PIM router-query messages are sent. It can be a number from 1 to 65535. The default is 30 seconds.

Defaults

30 seconds

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Routers configured for IP multicast send PIM router-query messages to determine which router will be the designated router for each LAN segment (subnet). The designated router is responsible for sending IGMP host-query messages to all hosts on the directly connected LAN. When operating in sparse mode, the designated router is responsible for sending source registration messages to the RP. The designated router is the router with the largest IP address.

Examples

The following example changes the PIM router-query message interval to 45 seconds:

```
interface tunnel 0
ip pim query-interval 45
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp query-interval</code></td>
<td>Configures the frequency at which the Cisco IOS software sends IGMP host-query messages.</td>
</tr>
</tbody>
</table>
ip pim rp-address

To configure the address of a PIM rendezvous point (RP) for a particular group, use the **ip pim rp-address** global configuration command. To remove an RP address, use the **no** form of this command.

```
ip pim rp-address ip-address [group-access-list-number] [override]

no ip pim rp-address ip-address [group-access-list-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of a router to be a PIM RP. This is a unicast IP address in four-part, dotted notation.</td>
</tr>
<tr>
<td>group-access-list-number</td>
<td>(Optional) Number of an access list that defines for which multicast groups the RP should be used. This is a standard IP access list. The number can be from 1 to 100.</td>
</tr>
<tr>
<td>override</td>
<td>(Optional) Indicates that if there is a conflict between the RP configured with this command and one learned by Auto-RP, the RP configured with this command prevails.</td>
</tr>
</tbody>
</table>

Defaults

No PIM RPs are preconfigured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must configure the IP address of RPs on all routers (including the RP router). First-hop routers send register packets to the RP address on behalf of source multicast hosts. Routers also use this address on behalf of multicast hosts that want to become members of a group. These routers send Join and Prune messages towards the RP. The RP must be a PIM router; however, it does not require any special configuration to recognize that it is the RP. Also, RPs are not members of the multicast group; rather, they serve as a “meeting place” for multicast sources and group members.

You can configure the Cisco IOS software to use a single RP for more than one group. The conditions specified by the access list determine which groups the RP can be used for. If no access list is configured, the RP is used for all groups.

A PIM router can use multiple RPs, but only one per group.

If there is no RP configured for a group, the router will treat the group as dense using the dense-mode PIM techniques.

If the RP for a group is learned through a dynamic mechanism, such as Auto-RP, then this command might not be required. If there is a conflict between the RP configured with this command and one learned by Auto-RP, the Auto-RP information is used, unless the **override** keyword is specified.
Examples

The following example sets the PIM RP address to 198.92.37.33 for all multicast groups:

```
ip pim rp-address 198.92.37.33
```

The following example sets the PIM RP address to 147.106.6.22 for the multicast group 225.2.2.2 only:

```
access list 1 225.2.2.2 0.0.0.0
ip pim rp-address 147.106.6.22 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list (IP standard)</td>
<td>Defines a standard IP access list.</td>
</tr>
</tbody>
</table>
ip pim rp-announce-filter

To filter incoming Auto-RP announcement messages coming from the RP, use the `ip pim rp-announce-filter` global configuration command. To remove the filter, use the `no` form of this command.

```
ip pim rp-announce-filter rp-list access-list-number group-list access-list-number
no ip pim rp-announce-filter rp-list access-list-number group-list access-list-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rp-list access-list-number</td>
<td>Standard access list of RP addresses that are allowable for the group ranges supplied in the <code>group-list access-list-number</code>.</td>
</tr>
<tr>
<td>group-list access-list-number</td>
<td>Standard access list that describes the multicast groups the RPs serve.</td>
</tr>
</tbody>
</table>

Defaults

All RP announcements are accepted.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command allows you to configure policies on an AutoRP mapping agent router. These policies allow the mapping agent router to accept or reject incoming candidate RP announcement messages.

This command can be configured so that the AutoRP mapping agent router ignores RP announcement messages from specific or unknown routers. You can also filter RP announcement messages from an RP for specific group prefixes, which will restrict the AutoRP mapping agent router to be the candidate RP for the ranges not filtered on the mapping agent.

Note

Only routers configured as AutoRP mapping agents by using the `ip pim send-rp-discovery` command subscribe to candidate RP announcement messages. Therefore, this command is effective only when configured on a mapping agent router. This command has no effect when configured on any other router.

If more than one AutoRP mapping agent router is present in the system, you must configure the same filters on all AutoRP mapping agent routers to avoid inconsistencies in AutoRP operations.

If no `ip pim rp-announce-filter` commands are configured, an AutoRP mapping agent router will accept any candidate RP announcement messages from any routers. Configure one or more `ip pim rp-announce-filter` commands on the mapping agents to filter out unwanted AutoRP announcement messages.

The `group-list access-list` keyword must always be defined when the `ip pim rp-announce-filter` command is used. Omitting this option permit all multicast groups, rendering the command useless.
Unlike the `access-list` command, you can enter the `ip pim rp-announce-filter` command in any desired order. A received RP announce message is only then accepted if it is not blocked by any of the configured `ip pim rp-announce-filter` commands.

Configure this command on the Protocol Independent Multicast (PIM) RP mapping agent. If more than one RP mapping agent is used, it is recommended to make the filters among them consistent so that there are no conflicts in the mapping state when the announcing agent goes down.

Examples

The following example configures the router to accept RP announcements from RPs in access list 1 for group ranges described in access-list 2:

```
ip pim rp-announce-filter rp-list 1 group-list 2
access-list 1 permit 10.0.0.1
access-list 1 permit 10.0.0.2
access-list 2 permit 224.0.0.0 15.255.255.255
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list (IP standard)</td>
<td>Defines a standard IP access list.</td>
</tr>
</tbody>
</table>
ip pim rp-candidate

To configure the router to advertise itself as a PIM Version 2 candidate Rendezvous Point (RP) to the bootstrap router, use the `ip pim rp-candidate` global configuration command. To remove this router as a candidate for being an RP, use the `no` form of this command.

```
ip pim rp-candidate type number [group-list access-list-number]
no ip pim rp-candidate
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type number</code></td>
<td>IP address associated with this interface type and number on this router is advertised as a candidate RP address.</td>
</tr>
<tr>
<td><code>group-list</code></td>
<td>(Optional) Standard IP access list number that defines the group prefixes that are advertised in association with the RP address.</td>
</tr>
</tbody>
</table>

Defaults

Disabled

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command causes the router to send a PIM Version 2 message advertising itself as a candidate RP to the bootstrap router. The addresses allowed by the access list, together with the router identified by the type and number, constitute the RP and its range of addresses it is responsible for.

Use this command only in backbone routers that have good connectivity to all parts of the PIM domain. That is, a stub router that relies on an on-demand dialup link to connect to the rest of the PIM domain is not a good candidate RP.

Examples

The following example configures the router to advertise itself as a candidate RP to the bootstrap router in its PIM domain. Standard access list number 4 specifies the group prefix associated with the RP that has the address identified by Ethernet interface 2. That RP is responsible for the groups with the prefix 239.

```
ip pim rp-candidate ethernet 2 group-list 4
access-list 4 permit 239.0.0.0 0.255.255.255
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip pim bsr-candidate</code></td>
<td>Configures the router to announce its candidacy as a BSR.</td>
</tr>
<tr>
<td><code>ip pim rp-announce-filter</code></td>
<td>Filters incoming Auto-RP announcement messages coming from the RP.</td>
</tr>
</tbody>
</table>
ip pim send-rp-announce

To use Auto-RP to configure which groups the router is willing to act as RP for, use the `ip pim send-rp-announce` global configuration command. To deconfigure this router to be the RP, use the `no` form of this command.

```
ip pim send-rp-announce type number scope ttl group-list access-list-number

no ip pim send-rp-announce
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type number</code></td>
<td>Interface type and number that identify the RP address.</td>
</tr>
<tr>
<td><code>scope ttl</code></td>
<td>Time-to-live value that limits the announcements.</td>
</tr>
<tr>
<td><code>group-list access-list-number</code></td>
<td>Access list that describes the group ranges for which this router is the RP.</td>
</tr>
</tbody>
</table>

Defaults

Auto-RP is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command in the router you want to be an RP. This command causes the router to send an Auto-RP announcement message to the well-known group CISCO-RP-ANNOUNCE (224.0.1.39). This message announces the router as a candidate RP for the groups in the range described by the access list.

Examples

The following example sends RP announcements out all PIM-enabled interfaces for a maximum of 31 hops. The IP address the router wants to be identified by as RP is the IP address associated with Ethernet interface 0. Access-list 5 describes for which groups this router serves as RP.

```
ip pim send-rp-announce ethernet0 scope 31 group-list 5 access-list 5 permit 224.0.0.0 15.255.255.255
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list (IP standard)</td>
<td>Defines a standard IP access list.</td>
</tr>
</tbody>
</table>
ip pim send-rp-discovery

To configure the router to be an RP-mapping agent, use the `ip pim send-rp-discovery` global configuration command. To restore the default value, use the `no` form of this command.

```
ip pim send-rp-discovery scope ttl
no ip pim send-rp-discovery
```

Syntax Description

<table>
<thead>
<tr>
<th>scope</th>
<th>TTL value in the IP header that keeps the discovery messages within this number of hops.</th>
</tr>
</thead>
</table>

Defaults

The router is not an RP mapping agent.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Configure this command on the router designated as an RP-mapping agent. Specify a TTL large enough to cover your PIM domain.

When Auto-RP is used, the following steps occur:

1. The RP-mapping agent listens on well-known group address CISCO-RP-ANNOUNCE (224.0.1.39), which candidate RPs send to.
2. The RP-mapping agent sends RP-to-group mappings in an Auto-RP RP discovery message to the well-known group CISCO-RP-DISCOVERY (224.0.1.40). The TTL value limits how many hops the message can take.
3. PIM designated routers listen to this group and use the RPs they learn about from the discovery message.

Examples

The following example limits Auto-RP RP Discovery messages to 20 hops:

```
ip pim send-rp-discovery scope 20
```
ip pim spt-threshold

To configure when a PIM leaf router should join the shortest path source-tree for the specified group, use the `ip pim spt-threshold` global configuration command. To restore the default value, use the `no` form of this command.

```
ip pim spt-threshold {kbps | infinity} [group-list access-list-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kbps</td>
<td>Traffic rate in kilobits per second.</td>
</tr>
<tr>
<td>infinity</td>
<td>Causes all sources for the specified group to use the shared-tree.</td>
</tr>
<tr>
<td>group-list</td>
<td>(Optional) Indicates what groups the threshold applies to. Must be a standard IP access list number.</td>
</tr>
<tr>
<td>access-list-number</td>
<td>If the value is 0 or is omitted, the threshold applies to all groups.</td>
</tr>
</tbody>
</table>

Defaults

When this command is not used, the PIM leaf router joins the shortest path tree immediately after the first packet arrives from a new source.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If a source sends at a rate greater than or equal to the `kbps` value, a PIM Join message is triggered toward the source to construct a source-tree.

If the `infinity` keyword is specified, all sources for the specified group will use the shared-tree. Specifying a group-list access list indicates what groups the threshold applies to.

If the traffic rate from the source drops below the threshold `kbps` value, the leaf router will, after some amount of time, switch back to the shared tree and send a Prune message toward the source.

Examples

The following example sets a threshold of 4 kbps, above which traffic to a group from a source will cause the router to switch to the shortest path tree to that source:

```
ip pim spt-threshold 4
```
ip pim vc-count

To change the maximum number of virtual circuits that PIM can open, use the `ip pim vc-count` interface configuration command. To restore the default value, use the `no` form of this command.

```
ip pim vc-count number
no ip pim vc-count
```

Syntax Description

| number | Maximum number of virtual circuits that PIM can open. The default is 200 virtual circuits. The range is from 1 to 65535. |

Defaults

200 virtual circuits per ATM interface or subinterface

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example allows PIM to open a maximum of 250 virtual circuits:

```
ip pim vc-count 250
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim minimum-vc-rate</td>
<td>Configures the minimum traffic rate to keep virtual circuits from being idled.</td>
</tr>
<tr>
<td>ip pim multipoint-signalling</td>
<td>Enables PIM to open ATM multipoint switched virtual circuits for each multicast group that a receiver joins.</td>
</tr>
<tr>
<td>ip pim</td>
<td>Enables PIM on an interface.</td>
</tr>
<tr>
<td>show ip pim vc</td>
<td>Displays ATM virtual circuit status information for multipoint VCs opened by PIM.</td>
</tr>
</tbody>
</table>
ip pim version

To configure the PIM version of the interface, use the `ip pim version` interface configuration command. To restore the default value, use the `no` form of this command.

```
ip pim version [1 | 2]
no ip pim version
```

Syntax Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Optional) Configures PIM Version 1.</td>
</tr>
<tr>
<td>2</td>
<td>(Optional) Configures PIM Version 2.</td>
</tr>
</tbody>
</table>

Defaults

Version 2

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

An interface in Version 2 mode automatically downgrades to Version 1 mode if that interface has a PIM Version 1 neighbor. The interface returns to Version 2 mode after all Version 1 neighbors disappear (that is, they are shut down or upgraded).

Examples

The following example configures the interface to operate in PIM Version 1 mode:

```
interface ethernet 0
ip address 1.1.1.1 255.0.0.0
ip pim sparse-dense-mode
ip pim version 1
```
ip rtp compression-connections

To specify the total number of RTP header compression connections that can exist on an interface, use the `ip rtp compression-connections` interface configuration command. To restore the default value, use the `no` form of this command.

```
  ip rtp compression-connections number

  no ip rtp compression-connections
```

Syntax Description

- `number` Number of connections the cache supports, in the range from 3 to 256. The default is 16 connections.

Defaults

16 connections

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example changes the number of RTP header compression connections supported to 24:

```
interface serial 0
  encapsulation ppp
  ip rtp header-compression
  ip rtp compression-connections 24
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip rtp header-compression</td>
<td>Enables RTP header compression.</td>
</tr>
</tbody>
</table>
ip rtp header-compression

To enable RTP header compression, use the `ip rtp header-compression` interface configuration command. To disable RTP header compression, use the `no` form of this command.

```
ip rtp header-compression [passive]
no ip rtp header-compression [passive]
```

Syntax Description

- `passive` (Optional) Compresses outgoing RTP packets only if incoming RTP packets on the same interface are compressed.

Defaults

Disabled

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you use this command without the `passive` keyword, the software compresses all RTP traffic.

You can compress IP/UDP/RTP headers to reduce the size of your packets. This is especially useful for RTP, since RTP payload can be as small as 20 bytes, and the uncompressed header is 40 bytes.

RTP header compression is supported on serial lines using Frame Relay, HDLC, or PPP encapsulation. You must enable compression on both ends of a serial connection.

This feature can compress unicast or multicast RTP packets, and hence MBONE traffic can also be compressed over slow links. The compression scheme is beneficial only when you have small payload sizes, as in audio traffic.

Examples

The following example enables RTP header compression on serial interface 0 and limits the number of RTP header compression connections to 10:

```
interface serial 0
encapsulation ppp
ip rtp header-compression
ip rtp compression-connections 10
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear ip rtp header-compression</code></td>
<td>Clears RTP header compression structures and statistics.</td>
</tr>
<tr>
<td><code>ip rtp compression-connections</code></td>
<td>Specifies the total number of RTP header compression connections that can exist on an interface.</td>
</tr>
<tr>
<td><code>show ip rtp header-compression</code></td>
<td>Displays RTP header compression statistics.</td>
</tr>
</tbody>
</table>
ip sdr cache-timeout

To limit how long a Session Directory Protocol (sdr) cache entry stays active in the cache, use the `ip sdr cache-timeout` global configuration command. To restore the default value, use the `no` form of this command.

```
ip sdr cache-timeout minutes
no ip sdr cache-timeout
```

Syntax Description

| minutes | Time, in minutes, that an sdr cache entry is active in the cache. |

Defaults

Disabled, which means entries are never deleted from the cache.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You might want to limit how long sdr cache entries remain active because, otherwise, the source might stop advertising sdr’s. You don’t want to keep old advertisements needlessly.

Examples

The following example causes sdr cache entries to remain in the cache for only 30 minutes:

```
ip sdr cache-timeout 30
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip sdr</td>
<td>Deletes a Session Directory Protocol (sdr) cache entry or the entire sdr cache.</td>
</tr>
<tr>
<td>show ip sdr</td>
<td>Displays the session directory cache.</td>
</tr>
</tbody>
</table>
ip sdr listen

To enable the Cisco IOS software to listen to session directory advertisements, use the `ip sdr listen` interface configuration command. To disable the function, use the `no` form of this command.

```
ip sdr listen
no ip sdr listen
```

Syntax Description
This command has no arguments or keywords.

Defaults
Disabled

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command replaces the `ip sd listen` command, which is obsolete.

Session Directory Protocol (sdr) is a multicast application for setting up desktop conferencing sessions. It allocates group addresses and allows the user to specify the scope of the group and whether audio, video, or whiteboard applications will be invoked when users open the session.

Use this command to store session advertisements sent to the group. The `ip sdr listen` command merely enables the software to listen to session directory advertisements. The router joins the default session directory group (group 224.2.127.254) on the interface. Use this command to get contact information.

Examples
The following example enables a router to listen to session directory advertisements:

```
ip sdr listen
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip sdr</td>
<td>Deletes a Session Directory Protocol (sdr) cache entry or the entire sdr cache.</td>
</tr>
<tr>
<td>show ip sdr</td>
<td>Displays the session directory cache.</td>
</tr>
</tbody>
</table>

To query what neighboring multicast routers are peering with the local router, use the `mrinfo` EXEC command.

```
mrinfo [hostname | address] [source-address | interface]
```

Syntax Description

- **hostname | address** (Optional) Queries the DNS name or IP address of the multicast router. If omitted, the router queries itself.
- **source-address** (Optional) Source address used on mrinfo requests. If omitted, the source address is based on the outbound interface for the destination.
- **interface** (Optional) Source interface used on mrinfo requests. If omitted, the source is based on the outbound interface for the destination.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `mrinfo` command is the MBONE’s original tool to determine what neighboring multicast routers are peering with a multicast router. Cisco routers have supported responding to `mrinfo` requests since Cisco IOS Release 10.2.

Now you can query a multicast router using this command. The output format is identical to DVMRP’s `mrouted` version. (The `mrouted` software is the UNIX software that implements DVMRP.)

Examples

The following is sample output of the `mrinfo` command:

```
Router # mrinfo
192.31.7.37 (barrnet-gw.cisco.com) [version cisco 11.1] [flags: PMSA]:
  192.31.7.37 -> 192.31.7.34 (sj-wall-2.cisco.com) [1/0/pim]
  192.31.7.37 -> 192.31.7.47 (dirtylab-gw-2.cisco.com) [1/0/pim]
  192.31.7.37 -> 192.31.7.44 (dirtylab-gw-1.cisco.com) [1/0/pim]
  131.119.26.10 -> 131.119.26.9 (su-pr2.bbnplanet.net) [1/32/pim]
```

The flags indicate the following:

- **P** = prune-capable
- **M** = mtrace-capable
- **S** = SNMP-capable
- **A** = Auto-RP-capable
To display IP multicast packet rate and loss information, use the `mstat` user EXEC command.

```
mstat source [destination] [group]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>DNS name or the IP address of the multicast-capable source.</td>
</tr>
<tr>
<td>destination</td>
<td>(Optional) DNS name or address of the destination. If omitted, the command uses the system at which the command is typed.</td>
</tr>
<tr>
<td>group</td>
<td>(Optional) DNS name or multicast address of the group to be displayed. Default address is 224.2.0.1 (the group used for MBONE Audio).</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If no arguments are entered, the router will interactively prompt you for them.

This command is a form of UNIX mtrace that reports packet rate and loss information.
The following is sample output from the mstat command:

```
Router# mstat lwei-home-ss2 171.69.58.88 224.0.255.255
```

Type escape sequence to abort.
Mtrace from 171.69.143.27 to 171.69.58.88 via group 224.0.255.255
>From source (lwei-home-ss2.cisco.com) to destination (lwei-ss20.cisco.com)
Waiting to accumulate statistics......
Results after 10 seconds:

<table>
<thead>
<tr>
<th>Source</th>
<th>Response Dest</th>
<th>Packet Statistics For All Multicast Traffic</th>
<th>Only For Traffic From 171.69.143.27</th>
</tr>
</thead>
<tbody>
<tr>
<td>171.69.143.27</td>
<td>171.69.62.144</td>
<td>rtt 48 ms Lost/Sent = Pct Rate</td>
<td>To 224.0.255.255</td>
</tr>
</tbody>
</table>

```
v / hop 48 ms --------------------------------------------------------------
171.69.143.25 lwei-cisco-isdn.cisco.com
171.69.121.84
171.69.121.45 eng-frmt12-pri.cisco.com
171.69.121.4
171.69.5.27 eng-cc-4.cisco.com
171.69.5.21
171.69.62.130 eng-ios-2.cisco.com
171.69.62.144
171.69.58.65 eng-ios-f-5.cisco.com
171.69.58.88 171.69.62.144
```

Table 61 describes the fields shown in the display.

Table 61 mstat Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Traffic source of packet.</td>
</tr>
<tr>
<td>Response Dest</td>
<td>Place where the router sends the results of mstat command.</td>
</tr>
<tr>
<td>ttl</td>
<td>Number of hops required from the traffic source to the current hop.</td>
</tr>
<tr>
<td>hop</td>
<td>Number of milliseconds of delay.</td>
</tr>
<tr>
<td>Only For Traffic From ... 0/2</td>
<td>0 packets dropped out of 2 packets received. If, for example, -2/2 was indicated, then there are 2 extra packets; this could indicate a loop condition.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtrace</td>
<td>Traces the path from a source to a destination branch for a multicast distribution tree.</td>
</tr>
</tbody>
</table>
To trace the path from a source to a destination branch for a multicast distribution tree, use the mtrace user EXEC command.

```
mtrace source [destination] [group]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>DNS name or the IP address of the multicast-capable source. This is a unicast address of the beginning of the path to be traced.</td>
</tr>
<tr>
<td>destination</td>
<td>(Optional) DNS name or address of the unicast destination. If omitted, the mtrace starts from the system at which the command is typed.</td>
</tr>
<tr>
<td>group</td>
<td>(Optional) DNS name or multicast address of the group to be traced. Default address is 224.2.0.1 (the group used for MBONE Audio). When address 0.0.0.0 is used, the software invokes a weak mtrace. A weak mtrace is one that follows the RPF path to the source, regardless of whether any router along the path has multicast routing table state.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The trace request generated by the mtrace command is multicast to the multicast group to find the last hop router to the specified destination. The trace then follows the multicast path from destination to source by passing the mtrace request packet via unicast to each hop. Responses are unicast to the querying router by the first hop router to the source. This command allows you to isolate multicast routing failures.

If no arguments are entered, the router will interactively prompt you for them.

This command is identical in function to the UNIX version of mtrace.
Examples

The following is sample output from the mtrace command:

```
Router# mtrace 171.69.215.41 171.69.215.67 239.254.254.254
Type escape sequence to abort.
Mtrace from 171.69.215.41 to 171.69.215.67 via group 239.254.254.254
From source (?) to destination (?)
Querying full reverse path...
  0  171.69.215.67
-1  171.69.215.67 PIM thresh^ 0  0 ms
-2  171.69.215.74 PIM thresh^ 0  2 ms
-3  171.69.215.57 PIM thresh^ 0  894 ms
-4  171.69.215.41 PIM thresh^ 0  893 ms
-5  171.69.215.12 PIM thresh^ 0  894 ms
-6  171.69.215.98 PIM thresh^ 0  893 ms
```

Table 62 describes the fields shown in the display.

Table 62 mtrace Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtrace from 171.69.215.41 to 171.69.215.67 via group 239.254.254.254</td>
<td>Name and address of source, destination, and group for which routes are being traced.</td>
</tr>
<tr>
<td>-3 171.69.215.57</td>
<td>Hops away from destination (-3) and address of intermediate router.</td>
</tr>
<tr>
<td>PIM thresh^ 0</td>
<td>Multicast protocol in use on this hop, and ttl threshold.</td>
</tr>
<tr>
<td>893 ms</td>
<td>Time taken for trace to be forwarded between hops.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mstat</td>
<td>Displays IP multicast packet rate and loss information.</td>
</tr>
</tbody>
</table>
show frame-relay ip rtp header-compression

To show Frame Relay’s RTP header compression statistics, use the show frame-relay ip rtp header-compression EXEC command.

```
show frame-relay ip rtp header-compression [interface type number]
```

Syntax Description

- **interface type number** (Optional) Interface type and number.

Command Modes

EXEC

Command History

- **Release** 11.3
 - **Modification** This command was introduced.

Examples

The following is sample output from the show frame-relay ip rtp header-compression command:

```
Router# show frame-relay ip rtp header-compression
DLCI 17  Link/Destination info: ip 165.3.3.2
Interface Serial0:
  Rcvd: 0 total, 0 compressed, 0 errors
  0 dropped, 0 buffer copies, 0 buffer failures
Sent: 6000 total, 5998 compressed,
  227922 bytes saved, 251918 bytes sent
  1.90 efficiency improvement factor
Connect: 16 rx slots, 16 tx slots, 2 long searches, 2 misses
  99% hit ratio, five minute miss rate 0 misses/sec, 0 max
```

Table 63 describes the significant fields in the display.

Table 63 show frame relay ip rtp header-compression Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Serial0</td>
<td>Type and number of interface.</td>
</tr>
<tr>
<td>Rcvd: total</td>
<td>Number of packets received on the interface.</td>
</tr>
<tr>
<td>compressed</td>
<td>Number of packets with compressed header.</td>
</tr>
<tr>
<td>errors</td>
<td>Number of errors.</td>
</tr>
<tr>
<td>dropped</td>
<td>Number of dropped packets.</td>
</tr>
<tr>
<td>buffer copies</td>
<td>Number of buffers that had to be copied.</td>
</tr>
<tr>
<td>buffer failures</td>
<td>Number of failures in allocating buffers.</td>
</tr>
<tr>
<td>Sent: total</td>
<td>Total number of packets sent.</td>
</tr>
<tr>
<td>compressed</td>
<td>Number of packets sent with compressed header.</td>
</tr>
<tr>
<td>bytes saved</td>
<td>Total savings in bytes due to compression.</td>
</tr>
<tr>
<td>bytes sent</td>
<td>Total bytes sent after compression.</td>
</tr>
</tbody>
</table>
Table 63 show frame relay ip rtp header-compression Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>efficiency improvement factor</td>
<td>Compression efficiency.</td>
</tr>
<tr>
<td>Connect: rx slots</td>
<td>Total number of receive slots.</td>
</tr>
<tr>
<td>tx slots</td>
<td>Total number of transmit slots.</td>
</tr>
<tr>
<td>long searches</td>
<td>Searches that needed more than one lookup.</td>
</tr>
<tr>
<td>misses</td>
<td>Number of new states that were created.</td>
</tr>
<tr>
<td>hit ratio</td>
<td>Number of times existing states were revised.</td>
</tr>
<tr>
<td>five minute miss rate</td>
<td>Average miss rate.</td>
</tr>
<tr>
<td>max</td>
<td>Maximum miss rate.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame-relay ip rtp header-compression</td>
<td>Enables RTP header compression for all Frame Relay maps on a physical interface.</td>
</tr>
<tr>
<td>frame-relay map ip compress</td>
<td>Enables both RTP and TCP header compression on a link.</td>
</tr>
<tr>
<td>frame-relay map ip rtp header-compression</td>
<td>Enables RTP header compression per DLCI.</td>
</tr>
<tr>
<td>show ip rtp header-compression</td>
<td>Displays RTP header compression statistics.</td>
</tr>
</tbody>
</table>
show ip dvmrp route

To display the contents of the DVMRP routing table, use the `show ip dvmrp route` EXEC command.

`show ip dvmrp route [name | ip-address]`

Syntax Description

- `name | ip-address` (Optional) Name or IP address of an entry in the DVMRP routing table.

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output of the `show ip dvmrp route` command:

```
Router# show ip dvmrp route
DVMRP Routing Table - 1 entry
171.68.0.0/16 [100/11] uptime 07:55:50, expires 00:02:52
   via 137.39.3.93, Tunnel3
```

Table 64 describes the fields shown in the display

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 entry</td>
<td>Number of entries in the DMVRP routing table.</td>
</tr>
<tr>
<td>171.68.0.0/16</td>
<td>Source network.</td>
</tr>
<tr>
<td>uptime</td>
<td>How long in hours, minutes, and seconds that the route has been in the DVMRP routing table.</td>
</tr>
<tr>
<td>expires</td>
<td>How long in hours, minutes, and seconds until the entry is removed from the DVMRP routing table.</td>
</tr>
<tr>
<td>via 137.39.3.93</td>
<td>Next-hop router to the source network.</td>
</tr>
<tr>
<td>Tunnel3</td>
<td>Interface to the source network.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dvmrp accept-filter</td>
<td>Configures an acceptance filter for incoming DVMRP reports.</td>
</tr>
</tbody>
</table>
show ip igmp groups

To display the multicast groups that are directly connected to the router and that were learned via IGMP, use the `show ip igmp groups` EXEC command.

```
show ip igmp groups [group-name | group-address | type number]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group-name</code></td>
<td>(Optional) Name of the multicast group, as defined in the DNS hosts table.</td>
</tr>
<tr>
<td><code>group-address</code></td>
<td>(Optional) Address of the multicast group. This is a multicast IP address in four-part, dotted notation.</td>
</tr>
<tr>
<td><code>type</code></td>
<td>(Optional) Interface type.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>(Optional) Interface number.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you omit all optional arguments, the `show ip igmp groups` command displays by group address and interface type and number all directly connected multicast groups.

Examples

The following is sample output from the `show ip igmp groups` command:

```
Router# show ip igmp groups

IGMP Connected Group Membership
Group Address    Interface Uptime Expires Last Reporter
224.0.255.1      Ethernet0 18:51:41 0:02:15 198.92.37.192
224.2.226.60     Ethernet0 1:51:31 0:02:17 198.92.37.192
224.2.127.255    Ethernet0 18:51:45 0:02:17 198.92.37.192
226.2.2.2        Ethernet1 18:51:47 never   0.0.0.0
224.2.0.1        Ethernet0 18:51:43 0:02:14 198.92.37.192
225.2.2.2        Ethernet0 18:51:43 0:02:21 198.92.37.33
225.2.2.4        Ethernet1 18:51:47 never   0.0.0.0
225.2.2.4        Ethernet1 18:18:02 0:02:20 198.92.37.192
225.2.2.4        Ethernet1 18:23:32 0:02:55 198.92.36.128
```
Table 65 describes the fields shown in the display.

Table 65 show ip igmp groups Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group address</td>
<td>Address of the multicast group.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface through which the group is reachable.</td>
</tr>
<tr>
<td>Uptime</td>
<td>How long in hours, minutes, and seconds this multicast group has been known.</td>
</tr>
<tr>
<td>Expires</td>
<td>How long in hours, minutes, and seconds until the entry is removed from the IGMP groups table.</td>
</tr>
<tr>
<td>Last Reporter</td>
<td>Last host to report being a member of the multicast group.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp</td>
<td>Configures the frequency at which the Cisco IOS software sends IGMP host-query messages.</td>
</tr>
<tr>
<td>query-interval</td>
<td></td>
</tr>
</tbody>
</table>
show ip igmp interface

To display multicast-related information about an interface, use the `show ip igmp interface` EXEC command.

```
show ip igmp interface [type number]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>(Optional) Interface type.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) Interface number.</td>
</tr>
</tbody>
</table>

| Command Modes | EXEC |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you omit the optional arguments, the `show ip igmp interface` command displays information about all interfaces.

This command also displays information about dynamically learned DVMRP routers on the interface.
Examples
The following is sample output from the `show ip igmp interface` command:

```
Router# show ip igmp interface

Ethernet0 is up, line protocol is up
    Internet address is 198.92.37.6, subnet mask is 255.255.255.0
    IGMP is enabled on interface
    IGMP query interval is 60 seconds
    Inbound IGMP access group is not set
    Multicast routing is enabled on interface
    Multicast TTL threshold is 0
    Multicast designated router (DR) is 198.92.37.33
    No multicast groups joined

Ethernet1 is up, line protocol is up
    Internet address is 198.92.36.129, subnet mask is 255.255.255.0
    IGMP is enabled on interface
    IGMP query interval is 60 seconds
    Inbound IGMP access group is not set
    Multicast routing is enabled on interface
    Multicast TTL threshold is 0
    Multicast designated router (DR) is 198.92.36.131
    Multicast groups joined: 225.2.2.2 226.2.2.2

Tunnel0 is up, line protocol is up
    Internet address is 10.1.37.2, subnet mask is 255.255.0.0
    IGMP is enabled on interface
    IGMP query interval is 60 seconds
    Inbound IGMP access group is not set
    Multicast routing is enabled on interface
    Multicast TTL threshold is 0
    No multicast groups joined
```

Table 66 describes the fields shown in the display.

Table 66 `show ip igmp interface` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0 is up, line protocol is up</td>
<td>Interface type, number, and status.</td>
</tr>
<tr>
<td>Internet address is...</td>
<td>Internet address of the interface and subnet mask being applied to the interface, as specified with the <code>ip address</code> command.</td>
</tr>
<tr>
<td>subnet mask is...</td>
<td></td>
</tr>
<tr>
<td>IGMP is enabled on interface</td>
<td>Indicates whether IGMP has been enabled on the interface with the <code>ip pim</code> command.</td>
</tr>
<tr>
<td>IGMP query interval is 60 seconds</td>
<td>Interval at which the Cisco IOS software sends PIM router-query messages, as specified with the <code>ip igmp query-interval</code> command.</td>
</tr>
<tr>
<td>Inbound IGMP access group is not set</td>
<td>Indicates whether an IGMP access group has been configured with the <code>ip igmp access-group</code> command.</td>
</tr>
<tr>
<td>Multicast routing is enabled on interface</td>
<td>Indicates whether multicast routing has been enabled on the interface with the <code>ip pim</code> command.</td>
</tr>
<tr>
<td>Multicast TTL threshold is 0</td>
<td>Packet time-to-threshold, as specified with the <code>ip multicast ttl-threshold</code> command.</td>
</tr>
</tbody>
</table>
Table 66 show ip igmp interface Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast designated router (DR) is...</td>
<td>IP address of the designated router for this LAN segment (subnet).</td>
</tr>
<tr>
<td>Multicast groups joined:</td>
<td>Indicates whether this interface is a member of any multicast groups and, if so, lists the IP addresses of the groups.</td>
</tr>
<tr>
<td>No multicast groups joined</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address</td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>ip igmp access-group</td>
<td>Controls the multicast groups that hosts on the subnet serviced by an interface can join.</td>
</tr>
<tr>
<td>ip igmp query-interval</td>
<td>Configures the frequency at which the Cisco IOS software sends IGMP host-query messages.</td>
</tr>
<tr>
<td>ip multicast ttl-threshold</td>
<td>Configures the TTL threshold of packets being forwarded out an interface.</td>
</tr>
<tr>
<td>ip pim</td>
<td>Enables PIM on an interface.</td>
</tr>
</tbody>
</table>
show ip mcache

To display the contents of the IP fast-switching cache, use the `show ip mcache` EXEC command.

```
show ip mcache [group [source]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>(Optional) Displays the fast-switching cache for the single group. The <code>group</code> argument can be either a Class D IP address or a DNS name.</td>
</tr>
<tr>
<td>source</td>
<td>(Optional) If <code>source</code> is also specified, displays a single multicast cache entry. The <code>source</code> argument can be either a unicast IP address or a DNS name.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show ip mcache` command. This entry shows a specific source (wrn-source 204.62.246.73) sending to the World Radio Network group (224.2.143.24).

```
Router> show ip mcache wrn wrn-source
```

IP Multicast Fast-Switching Cache
(204.62.246.73/32, 224.2.143.24), Fddi0, Last used: 00:00:00

<table>
<thead>
<tr>
<th>Ethernet0</th>
<th>MAC Header: 01005E028F1800000C1883D30800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet1</td>
<td>MAC Header: 01005E028F1800000C1883D60800</td>
</tr>
<tr>
<td>Ethernet2</td>
<td>MAC Header: 01005E028F1800000C1883D40800</td>
</tr>
<tr>
<td>Ethernet3</td>
<td>MAC Header: 01005E028F1800000C1883D70800</td>
</tr>
</tbody>
</table>

Table 67 describes the significant fields in the display.

Table 67 show ip mcache Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>204.62.246.73</td>
<td>Source address.</td>
</tr>
<tr>
<td>224.2.143.24</td>
<td>Destination address.</td>
</tr>
<tr>
<td>Fddi0</td>
<td>Incoming or expected interface on which the packet should be received.</td>
</tr>
<tr>
<td>Last used:</td>
<td>Latest time the entry was accessed for a packet that was successfully fast-switched. The word “Semi-fast” indicates that the first part of the outgoing interface list is fast switched and the rest of the list is process level switched.</td>
</tr>
<tr>
<td>Ethernet0</td>
<td>Outgoing interface list and respective MAC header that is used when rewriting the packet for output. If the interface is a tunnel, the MAC header will show the real next hop MAC header and then, in parentheses, the real interface name.</td>
</tr>
<tr>
<td>MAC Header:</td>
<td></td>
</tr>
</tbody>
</table>

Network Protocols Command Reference, Part 1
show ip mpacket

To display the contents of the circular cache-header buffer, use the show ip mpacket EXEC command.

```
show ip mpacket [source-address | name] [group-address | name] [detail]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-address</td>
<td>(Optional) Displays cache headers matching the specified source address or name.</td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>group-address</td>
<td>(Optional) Displays cache headers matching the specified group address or group name.</td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) In addition to the summary information, displays the rest of the IP header fields on an additional line, plus the first 8 bytes after the IP header (usually the UDP port numbers).</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is only applicable when the ip multicast cache-headers command is in effect.

Each time this command is entered, a new buffer is allocated. The summary display (when the detail keyword is omitted) shows the IP packet identifier, TTL, source and destination IP addresses, and a local timestamp when the packet was received.

The two arguments and one keyword can be used in the same command in any combination.

Examples

The following is sample output of the show ip mpacket command with a group-name:

```
Router # show ip mpacket smallgroup
IP Multicast Header Cache - entry count:6, next index: 7
        Key: id/ttl timestamp (name) source group
D782/117 206416.908 (ABC-xy.company.com) 198.15.228.10 224.5.6.7
7302/113 206417.908 (school.edu) 147.12.2.17 224.5.6.7
6CB2/114 206417.412 (MSSRS.company.com) 154.2.19.40 224.5.6.7
D782/117 206417.868 (ABC-xy.company.com) 198.15.228.10 224.5.6.7
E2E9/123 206418.488 (Newman.com) 211.1.8.10 224.5.6.7
1CA7/127 206418.544 (teller.company.com) 192.4.6.10 224.5.6.7
```

Table 68 describes the fields in the display.
Table 68 show ip mpacket Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry count</td>
<td>Number of packets cached (one packet for each line in the display). The cache has lines numbered from 0 to 1024.</td>
</tr>
<tr>
<td>next index</td>
<td>The index for the next element in the cache.</td>
</tr>
<tr>
<td>id</td>
<td>Identification number of the IP packet.</td>
</tr>
<tr>
<td>ttl</td>
<td>Current TTL of the packet.</td>
</tr>
<tr>
<td>timestamp</td>
<td>Timestamp sequence number of the packet.</td>
</tr>
<tr>
<td>(name)</td>
<td>DNS name of the source sending to the group. Name appears in parentheses.</td>
</tr>
<tr>
<td>source</td>
<td>IP address of the source sending to the group.</td>
</tr>
<tr>
<td>group</td>
<td>Multicast group address that the packet is sent to. In this example, the group address of “smallgroup.”</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip multicast</td>
<td>Allocate a circular buffer to store IP multicast packet headers that the router receives.</td>
</tr>
<tr>
<td>cache-headers</td>
<td></td>
</tr>
</tbody>
</table>
show ip mroute

To display the contents of the IP multicast routing table, use the `show ip mroute` EXEC command.

```
show ip mroute [group-name | group-address] [source] [summary] [count] [active kbps]
```

Syntax Description

- **group-name | group-address** (Optional) IP address, name, or interface of the multicast group as defined in the DNS hosts table.
- **source** (Optional) IP address or name of a multicast source.
- **summary** (Optional) Displays a one-line, abbreviated summary of each entry in the IP multicast routing table.
- **count** (Optional) Displays statistics about the group and source, including number of packets, packets per second, average packet size, and bytes per second.
- **active kbps** (Optional) Displays the rate that active sources are sending to multicast groups. Active sources are those sending at a rate of `kbps` or higher. The `kbps` argument defaults to 4 kbps.

Defaults

The `show ip mroute` command displays all groups and sources.

The `show ip mroute active` command displays all sources sending at a rate greater than or equal to 4 kbps.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you omit all optional arguments and keywords, the `show ip mroute` command displays all entries in the IP multicast routing table.

The Cisco IOS software populates the multicast routing table by creating source, group (S,G) entries from star, group (*,G) entries. The star refers to all source addresses, the “S” refers to a single source address, and the “G” is the destination multicast group address. In creating (S,G) entries, the software uses the best path to that destination group found in the unicast routing table (that is, via Reverse Path Forwarding [RPF]).
The following is sample output from the `show ip mroute` command for a router operating in dense mode. This command displays the contents of the IP multicast routing table for the multicast group named `cbone-audio`.

```
Router# show ip mroute cbone-audio

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned
       R - RP-bit set, F - Register flag, T - SPT-bit set
Timers: Uptime/Expires
Interface state: Interface, Next-Hop, State/Mode

(*, 224.0.255.1), uptime 0:57:31, expires 0:02:59, RP is 0.0.0.0, flags: DC
   Incoming interface: Null, RPF neighbor 0.0.0.0, Dvmrp
   Outgoing interface list:
      Ethernet0, Forward/Dense, 0:57:31/0:02:52
      Tunnel0, Forward/Dense, 0:56:55/0:01:28

(198.92.37.100/32, 224.0.255.1), uptime 20:20:00, expires 0:02:55, flags: C
   Incoming interface: Tunnel0, RPF neighbor 10.20.37.33, Dvmrp
   Outgoing interface list:
      Ethernet0, Forward/Dense, 20:20:00/0:02:52
```

The following is sample output from the `show ip mroute` command for a router operating in sparse mode:

```
Router# show ip mroute

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned
       R - RP-bit set, F - Register flag, T - SPT-bit set
Timers: Uptime/Expires
Interface state: Interface, Next-Hop, State/Mode

(*, 224.0.255.3), uptime 5:29:15, RP is 198.92.37.2, flags: SC
   Incoming interface: Tunnel0, RPF neighbor 10.20.37.33, Dvmrp
   Outgoing interface list:
      Ethernet0, Forward/Sparse, 5:29:15/0:02:57

(198.92.37.100/32, 224.0.255.3), uptime 5:29:15, expires 0:02:59, flags: C
   Incoming interface: Tunnel0, RPF neighbor 10.3.35.1
   Outgoing interface list:
      Ethernet0, Forward/Sparse, 5:29:15/0:02:57
```

The following is sample output from the `show ip mroute` command that shows the VCD value, because an ATM interface with PIM multipoint signaling is enabled:

```
Router# show ip mroute 224.1.1.1

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned
       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 224.1.1.1), 00:03:57/00:02:54, RP 130.4.101.1, flags: SJ
   Incoming interface: Null, RPF nbr 0.0.0.0
   Outgoing interface list:
      ATM0/0, VCD 14, Forward/Sparse, 00:03:57/00:02:53
```
The following is sample output from the `show ip mroute` command with the `summary` keyword:

```
Router# show ip mroute summary

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned
       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT
Timers: Uptime/Expires
Interface state: Interface, Next-Hop, State/Mode

(*) 224.255.255.255, 2d16h/00:02:30, RP 171.69.10.13, flags: SJPC
(*) 224.2.127.253, 00:58:18/00:02:00, RP 171.69.10.13, flags: SJC
(*) 224.1.127.255, 00:58:21/00:02:03, RP 171.69.10.13, flags: SJC
(*) 224.2.127.254, 2d16h/00:00:00, RP 171.69.10.13, flags: SJCL
     (128.9.160.67/32, 224.2.127.254), 00:02:46/00:00:12, flags: CLJT
     (129.48.24.217/32, 224.2.127.254), 00:02:15/00:00:40, flags: CLJT
     (130.207.8.33/32, 224.2.127.254), 00:00:25/00:02:32, flags: CLJT
     (131.243.2.62/32, 224.2.127.254), 00:00:51/00:02:03, flags: CLJT
     (140.173.8.3/32, 224.2.127.254), 00:00:26/00:02:33, flags: CLJT
     (171.69.60.189/32, 224.2.127.254), 00:03:47/00:00:46, flags: CLJT

The following is sample output from the `show ip mroute` command with the `active` keyword:

```
Router# show ip mroute active

Active IP Multicast Sources - sending >= 4 kbps

Group: 224.2.127.254, (sdr.cisco.com)
 Source: 146.137.28.69 (mbone.ipd.anl.gov)
 Rate: 1 pps/4 kbps(1sec), 4 kbps(last 1 secs), 4 kbps(life avg)

Group: 224.2.201.241, ACM 97
 Source: 130.129.52.160 (webcast3-e1.acm97.interop.net)
 Rate: 9 pps/93 kbps(1sec), 145 kbps(last 20 secs), 85 kbps(life avg)

Group: 224.2.207.215, ACM 97
 Source: 130.129.52.160 (webcast3-e1.acm97.interop.net)
 Rate: 3 pps/31 kbps(1sec), 63 kbps(last 19 secs), 65 kbps(life avg)
The following is sample output from the `show ip mroute` command with the `count` keyword:

```
Router# show ip mroute count

IP Multicast Statistics - Group count: 8, Average sources per group: 9.87
Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second

Group: 224.255.255.255, Source count: 0, Group pkt count: 0
    RP-tree: 0/0/0/0

Group: 224.2.127.253, Source count: 0, Group pkt count: 0
    RP-tree: 0/0/0/0

Group: 224.1.127.255, Source count: 0, Group pkt count: 0
    RP-tree: 0/0/0/0

Group: 224.2.127.254, Source count: 9, Group pkt count: 14
    RP-tree: 0/0/0/0
    Source: 128.2.6.9/32, 2/0/796/0
    Source: 128.32.131.87/32, 1/0/616/0
    Source: 128.125.51.58/32, 1/0/412/0
    Source: 130.207.8.33/32, 1/0/936/0
    Source: 131.243.2.62/32, 1/0/750/0
    Source: 140.173.8.3/32, 1/0/660/0
    Source: 146.137.28.69/32, 1/0/584/0
    Source: 171.69.60.189/32, 4/0/447/0
    Source: 204.162.119.8/32, 2/0/834/0

Group: 224.0.1.40, Source count: 1, Group pkt count: 3606
    RP-tree: 0/0/0/0
    Source: 171.69.214.50/32, 3606/0/48/0, RPF Failed: 1203

Group: 224.2.201.241, Source count: 36, Group pkt count: 54152
    RP-tree: 7/0/108/0
    Source: 13.242.36.83/32, 99/0/123/0
    Source: 36.29.1.3/32, 71/0/110/0
    Source: 128.9.160.96/32, 505/1/106/0
    Source: 128.32.163.170/32, 661/1/88/0
    Source: 128.115.31.26/32, 192/0/118/0
    Source: 128.146.111.45/32, 500/0/87/0
    Source: 128.183.33.134/32, 248/0/119/0
    Source: 128.195.7.62/32, 527/0/118/0
    Source: 128.223.32.25/32, 554/0/105/0
    Source: 128.223.32.151/32, 551/1/125/0
    Source: 128.223.156.117/32, 535/1/114/0
    Source: 128.223.225.21/32, 582/0/114/0
    Source: 129.89.142.50/32, 78/0/127/0
    Source: 129.99.50.14/32, 526/0/118/0
    Source: 130.129.0.13/32, 522/0/95/0
    Source: 130.129.52.160/32, 40839/16/920/161
    Source: 130.129.52.161/32, 476/0/97/0
    Source: 130.221.224.10/32, 456/0/113/0
    Source: 132.146.32.108/32, 9/1/112/0
```

Table 69 explains the fields shown in the displays.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags:</td>
<td>Provides information about the entry.</td>
</tr>
<tr>
<td>D - Dense</td>
<td>Entry is operating in dense mode.</td>
</tr>
</tbody>
</table>
Table 69 show ip mroute Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S - Sparse</td>
<td>Entry is operating in sparse mode.</td>
</tr>
<tr>
<td>C - Connected</td>
<td>A member of the multicast group is present on the directly connected interface.</td>
</tr>
<tr>
<td>L - Local</td>
<td>The router itself is a member of the multicast group.</td>
</tr>
<tr>
<td>P - Pruned</td>
<td>Route has been pruned. The Cisco IOS software keeps this information in case a downstream member wants to join the source.</td>
</tr>
<tr>
<td>R - Rp-bit set</td>
<td>Indicates that the (S,G) entry is pointing towards the RP. This is typically prune state along the shared tree for a particular source.</td>
</tr>
<tr>
<td>F - Register flag</td>
<td>Indicates that the software is Registering for a multicast source.</td>
</tr>
<tr>
<td>T - SPT-bit set</td>
<td>Indicates that packets have been received on the shortest path source tree.</td>
</tr>
<tr>
<td>J - Join SPTt</td>
<td></td>
</tr>
</tbody>
</table>

Timers: Uptime/Expires.

Interface state: Interface, Next-Hop or VCD, State/Mode.

(*, 224.0.255.1) (198.92.37.100/32, 224.0.255.1) Entry in the IP multicast routing table. The entry consists of the IP address of the source router followed by IP address of the multicast group. An asterisk (*) in place of the source router indicates all sources.

Entries in the first format are referred to as (*,G) or “star comma G” entries. Entries in the second format are referred to as (S,G) or “S comma G” entries. (*,G) entries are used to build (S,G) entries.

uptime How long in hours, minutes, and seconds the entry has been in the IP multicast routing table.

expires How long in hours, minutes, and seconds until the entry will be removed from the IP multicast routing table on the outgoing interface.

RP Address of the rendezvous point (RP) router. For routers and access servers operating in sparse mode, this address is always 0.0.0.0.

flags: Information about the entry.

Incoming interface: Expected interface for a multicast packet from the source. If the packet is not received on this interface, it is discarded.

RPF neighbor IP address of the upstream router to the source. “Tunneling” indicates that this router is sending data to the RP encapsulated in Register packets. The hexadecimal number in parentheses indicates to which RP it is registering. Each bit indicates a different RP if multiple RPs per group are used. If an asterisk (*) appears after the IP address in this field, the RPF neighbor has been learned through an assert.
Table 69 show ip mroute Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dvmrp or Mroute</td>
<td>Indicates if the RPF information is obtained from the DVMRP routing table or the static mroute configuration.</td>
</tr>
<tr>
<td>Outgoing interface list:</td>
<td>Interfaces through which packets will be forwarded. When the ip pim nbma-mode command is enabled on the interface, the IP address of the PIM neighbor is also displayed.</td>
</tr>
<tr>
<td>Ethernet0</td>
<td>Name and number of the outgoing interface.</td>
</tr>
<tr>
<td>Next hop or VCD</td>
<td>Next hop specifies downstream neighbor’s IP address. Virtual circuit descriptor number. VCD0 means the group is using the static-map virtual circuit.</td>
</tr>
<tr>
<td>Forward/Dense</td>
<td>Indicates that packets will be forwarded on the interface if there are no restrictions due to access lists or TTL threshold. Following the slash (/), mode in which the interface is operating (dense or sparse).</td>
</tr>
<tr>
<td>Forward/Sparse</td>
<td>Sparse-mode interface is in forward mode.</td>
</tr>
<tr>
<td>time/time (uptime/expiration time)</td>
<td>Per interface, how long in hours, minutes, and seconds the entry has been in the IP multicast routing table. Following the slash (/), how long in hours, minutes, and seconds until the entry will be removed from the IP multicast routing table.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip multicast-routing</td>
<td>Enables IP multicast routing or multicast distributed switching.</td>
</tr>
<tr>
<td>ip pim</td>
<td>Enables PIM on an interface.</td>
</tr>
</tbody>
</table>
show ip pim bsr

To display the bootstrap router (BSR) information, use the `show ip pim bsr` EXEC command.

```
show ip pim bsr
```

Syntax Description
This command has no arguments or keywords.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The output includes elected BSR information and information about the locally configured candidate RP advertisement.

Examples
The following is sample output from the `show ip pim bsr` command:

```
Router# show ip pim bsr
PIMv2 Bootstrap information
This system is the Bootstrap Router (BSR)
  BSR address: 171.69.143.28
  Uptime: 04:37:59, BSR Priority: 4, Hash mask length: 30
  Next bootstrap message in 00:00:03 seconds

  Next Cand_RP_advertisement in 00:00:03 seconds.
  RP: 171.69.143.28(Ethernet0), Group acl: 6
```
Table 70 describes the fields in the display.

Table 70 show ip pim bsr Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR address</td>
<td>IP address of the bootstrap router.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Length of time that this router has been up, in hours:minutes:seconds.</td>
</tr>
<tr>
<td>BSR Priority</td>
<td>Priority as configured in the <code>ip pim bsr-candidate</code> command.</td>
</tr>
<tr>
<td>Hash mask length</td>
<td>Length of a mask (32 bits maximum) that is to be ANDed with the group address before the hash function is called. This value is configured in the <code>ip pim bsr-candidate</code> command.</td>
</tr>
<tr>
<td>Next bootstrap message in</td>
<td>Time (in hours:minutes:seconds) in which the next bootstrap message is due from this BSR.</td>
</tr>
<tr>
<td>Next Cand_RP_advertisement in</td>
<td>Time (in hours:minutes:seconds) in which the next candidate RP advertisement will be sent.</td>
</tr>
<tr>
<td>RP</td>
<td>List of IP addresses of RPs.</td>
</tr>
<tr>
<td>Group acl</td>
<td>Standard IP access list number that defines the group prefixes that are advertised in association with the RP address. This value is configured in the <code>ip pim rp-candidate</code> command.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip pim bsr-candidate</code></td>
<td>Configures the router to announce its candidacy as a BSR.</td>
</tr>
<tr>
<td><code>ip pim rp-candidate</code></td>
<td>Configures the router to advertise itself as a PIM Version 2 candidate RP to the BSR.</td>
</tr>
<tr>
<td><code>show ip pim rp</code></td>
<td>Displays active RPs that are cached with associated multicast routing entries.</td>
</tr>
<tr>
<td><code>show ip pim rp-hash</code></td>
<td>Displays which RP is being selected for a specified group.</td>
</tr>
</tbody>
</table>
show ip pim interface

To display information about interfaces configured for PIM, use the `show ip pim interface` EXEC command.

```
show ip pim interface [type number] [count]
```

Syntax Description

- `type` (Optional) Interface type.
- `number` (Optional) Interface number.
- `count` (Optional) Number of packets received and sent out the interface.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command works only on interfaces that are configured for PIM.

Examples

The following is sample output from the `show ip pim interface` command:

```
Router# show ip pim interface

Address  Interface  Mode  Neighbor Count  Query Interval  DR
198.92.37.6  Ethernet0  Dense  2  30  198.92.37.33
198.92.36.129 Ethernet1  Dense  2  30  198.92.36.131
10.1.37.2  Tunnel0  Dense  1  30  0.0.0.0
```

The following is sample output from the `show ip pim interface` command with a `count`:

```
Router# show ip pim interface count

Address  Interface  FS  Mpackets In/Out
171.69.121.35  Ethernet0  *  548305239/13744856
171.69.121.35  Serial0.33  *  8256/67052912
198.92.12.73  Serial0.1719  *  219444/862191
```
Table 71 describes the fields shown in the display.

Table 71 show ip pim interface Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>IP address of the next-hop router.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface type and number that is configured to run PIM.</td>
</tr>
<tr>
<td>Mode</td>
<td>Multicast mode in which the Cisco IOS software is operating. This can be</td>
</tr>
<tr>
<td></td>
<td>dense mode or sparse mode. DVMRP indicates a DVMRP tunnel is configured.</td>
</tr>
<tr>
<td>Neighbor Count</td>
<td>Number of PIM neighbors that have been discovered through this interface.</td>
</tr>
<tr>
<td></td>
<td>If the Neighbor Count is 1 for a DVMRP tunnel, the neighbor is active</td>
</tr>
<tr>
<td></td>
<td>(receiving probes and reports).</td>
</tr>
<tr>
<td>Query Interval</td>
<td>Frequency, in seconds, of PIM router-query messages, as set by the ip pim</td>
</tr>
<tr>
<td></td>
<td>query-interval interface configuration command. The default is 30</td>
</tr>
<tr>
<td></td>
<td>seconds.</td>
</tr>
<tr>
<td>DR</td>
<td>IP address of the designated router on the LAN. Note that serial lines do</td>
</tr>
<tr>
<td></td>
<td>not have designated routers, so the IP address is shown as 0.0.0.0.</td>
</tr>
<tr>
<td>FS</td>
<td>An asterisk (*) in this column indicates fast switching is enabled.</td>
</tr>
<tr>
<td>Mpackets In/Out</td>
<td>Number of packets into and out of the interface since the box has been</td>
</tr>
<tr>
<td></td>
<td>up.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim</td>
<td>Enables PIM on an interface.</td>
</tr>
<tr>
<td>show ip pim</td>
<td>neighbor Lists the PIM neighbors discovered by the Cisco IOS software.</td>
</tr>
</tbody>
</table>
show ip pim neighbor

To list the PIM neighbors discovered by the Cisco IOS software, use the `show ip pim neighbor` EXEC command.

```
show ip pim neighbor [type number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type</code></td>
<td>(Optional) Interface type.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>(Optional) Interface number.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to determine which routers on the LAN are configured for PIM.

Examples

The following is sample output from the `show ip pim neighbor` command:

```
Router# show ip pim neighbor

PIM Neighbor Table
Neighbor Address Interface  Uptime  Expires    Mode
198.92.37.2   Ethernet0  17:38:16  0:01:25    Dense
198.92.37.33  Ethernet0  17:33:20  0:01:05    Dense (DR)
198.92.36.131 Ethernet1  17:33:20  0:01:08    Dense (DR)
198.92.36.130 Ethernet1  18:56:06  0:01:04    Dense
10.1.22.9     Tunnel0    19:14:59  0:01:09    Dense
```

Table 72 describes the fields shown in the display.

Table 72 show ip pim neighbor Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor Address</td>
<td>IP address of the PIM neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface type and number on which the neighbor is reachable.</td>
</tr>
<tr>
<td>Uptime</td>
<td>How long in hours, minutes, and seconds the entry has been in the PIM neighbor table.</td>
</tr>
<tr>
<td>Expires</td>
<td>How long in hours, minutes, and seconds until the entry will be removed from the IP multicast routing table.</td>
</tr>
<tr>
<td>Mode</td>
<td>Mode in which the interface is operating.</td>
</tr>
<tr>
<td>(DR)</td>
<td>Indicates that this neighbor is a designated router on the LAN.</td>
</tr>
</tbody>
</table>
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip pim interface</code></td>
<td>Displays information about interfaces configured for PIM.</td>
</tr>
</tbody>
</table>
show ip pim rp

To display active rendezvous points (RPs) that are cached with associated multicast routing entries, use the `show ip pim rp` EXEC command.

```
show ip pim rp [group-name | group-address | mapping]
```

Syntax Description

- `group-name` *(Optional) Name of the group about which to display RPs.*
- `group-address` *(Optional) Address of the group about which to display RPs.*
- `mapping` *(Optional) Displays all group-to-RP mappings that the router is aware of (either configured or learned from Auto-RP).*

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output of the `show ip pim rp` command:

```
Router# show ip pim rp

Group: 224.2.240.30, RP: 171.69.10.13, v1, uptime 1d03h, expires 00:04:17
Group: 224.1.127.255, RP: 171.69.10.13, v1, uptime 16:39:28, expires 00:04:05
Group: 224.2.127.254, RP: 171.69.10.13, v1, uptime 4d01h, expires 00:03:42
Group: 224.2.128.253, RP: 171.69.10.13, v1, uptime 12:06:25, expires 00:04:17
Group: 224.2.182.251, RP: 171.69.10.13, v1, uptime 3d10h, expires 00:03:16
```

The following is sample output of the `show ip pim rp` command when `mapping` is specified:

```
Router# show ip pim rp mapping

PIM Group-to-RP Mappings
This system is an RP
This system is an RP-mapping agent

Group(s) 224.0.1.39/32, uptime: 1w4d, expires: never
  RP 171.69.10.13 (sj-eng-mbone.cisco.com)
  Info source: local
Group(s) 224.0.1.40/32, uptime: 1w4d, expires: never
  RP 171.69.10.13 (sj-eng-mbone.cisco.com)
  Info source: local
Group(s) 239.255.0.0/16, uptime: 1d03h, expires: 00:02:28
  RP 171.69.143.25 (lwei-cisco-isdn.cisco.com), PIMv2 v1
  Info source: 171.69.143.25 (lwei-cisco-isdn.cisco.com)
Group(s): 224.0.0.0/4, Static
  RP: 171.69.10.13 (sj-eng-mbone.cisco.com)
```

Table 73 describes the fields in the displays.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Address of the multicast group about which to display RP information.</td>
</tr>
<tr>
<td>RP</td>
<td>Address of the RP for that group.</td>
</tr>
<tr>
<td>v1</td>
<td>Indicates the RP is running PIM Version 1.</td>
</tr>
<tr>
<td>uptime</td>
<td>Length of time the RP has been up in days and hours. If less than 1 day,</td>
</tr>
<tr>
<td></td>
<td>time is expressed in hours:minutes:seconds.</td>
</tr>
<tr>
<td>expires</td>
<td>Time in hours:minutes:seconds in which the entry will expire.</td>
</tr>
<tr>
<td>Info source</td>
<td>RP mapping agent that advertised the mapping.</td>
</tr>
</tbody>
</table>
show ip pim rp-hash

To display which RP is being selected for a specified group, use the `show ip pim rp-hash` EXEC command.

```
show ip pim rp-hash group
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Group for which to display RP information.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays which RP was selected for the group specified. It also shows whether this RP was selected by Auto-RP or the PIM Version 2 bootstrap mechanism.

Examples

The following is sample output from the `show ip pim rp-hash` command with the group address 239.1.1.1 specified:

```
Router# show ip pim rp-hash 239.1.1.1
RP 172.21.24.12 (mt1-47a.cisco.com), v2
  Info source: 172.21.24.12 (mt1-47a.cisco.com), via bootstrap
  Uptime: 05:15:33, expires: 00:02:01
```

Table 74 describes the fields in the display.

Table 74 show ip pim rp-hash Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 172.21.24.12 (mt1-47a.cisco.com), v2</td>
<td>Address of the RP for the group specified (239.1.1.1). Within parentheses is the DNS name of the RP. If the RP’s address is not registered in the DNS, a question mark (?) is displayed. PIM Version 2 configured.</td>
</tr>
<tr>
<td>Info source: 172.21.24.12 (mt1-47a.cisco.com), via bootstrap</td>
<td>Indicates from which system the router learned this RP information, along with the source’s DNS name. RP was selected by the bootstrap mechanism. In this case, the BSR is also the RP.</td>
</tr>
</tbody>
</table>
show ip pim rp-hash Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptime</td>
<td>Length of time (in hours:minutes:seconds) that the router has known about this RP.</td>
</tr>
<tr>
<td>expires</td>
<td>Time (in hours:minutes:seconds) after which the information about this RP expires. If the router does not receive any refresh messages in this time, it will discard information about this RP.</td>
</tr>
</tbody>
</table>
show ip pim vc

To display ATM virtual circuit status information for multipoint VCs opened by PIM, use the `show ip pim vc` EXEC command.

```
show ip pim vc [group-address | name] [type number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group-address</td>
<td>(Optional) IP multicast group or name. Displays only the single group.</td>
</tr>
<tr>
<td>name</td>
<td>way type number</td>
</tr>
</tbody>
</table>

Defaults

Displays VC status information for all ATM interfaces.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output for the `show ip pim vc` command:

```
Router# show ip pim vc

IP Multicast ATM VC Status
ATM0/0 VC count is 5, max is 200

Group          VCD  Interface  Leaf Count  Rate
224.2.2.2      26  ATM0/0       1           0 pps
224.1.1.1      28  ATM0/0       1           0 pps
224.4.4.4      32  ATM0/0       2           0 pps
224.5.5.5      35  ATM0/0       1           0 pps
```

Table 75 describes the significant fields in the display.

Table 75 show ip pim vc Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM0/0</td>
<td>ATM slot and port number on the interface.</td>
</tr>
<tr>
<td>VC count</td>
<td>Number of virtual circuits opened by PIM.</td>
</tr>
<tr>
<td>max</td>
<td>Maximum number of VCs that PIM is allowed to open, as configured by the <code>ip pim vc-count</code> command.</td>
</tr>
<tr>
<td>Group</td>
<td>IP address of the multicast group to which the router is multicasting.</td>
</tr>
<tr>
<td>VCD</td>
<td>Virtual circuit descriptor.</td>
</tr>
<tr>
<td>Interface</td>
<td>Outgoing interface.</td>
</tr>
</tbody>
</table>
Table 75 show ip pim vc Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf Count</td>
<td>Number of routers that have joined the group and are a member of that</td>
</tr>
<tr>
<td></td>
<td>multipoint virtual circuit.</td>
</tr>
<tr>
<td>Rate</td>
<td>Rate in packets per second as configured by the ip pim minimum-vc-rate</td>
</tr>
<tr>
<td></td>
<td>command.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim multipoint-signalling</td>
<td>Enables PIM to open ATM multipoint switched virtual circuits for each</td>
</tr>
<tr>
<td></td>
<td>multicast group that a receiver joins.</td>
</tr>
</tbody>
</table>
show ip rpf

To display how IP multicast routing does Reverse-Path Forwarding (RPF), use the `show ip rpf` EXEC command.

```
show ip rpf {source-address | name}
```

Syntax Description

- `source-address | name`: Source address or name of the host for which the RPF information is displayed.

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The router can Reverse-Path Forward from multiple routing tables (that is, the unicast routing table, DVMRP routing table, or static mroutes). This command tells you where the information is retrieved from.

Examples

The following is sample output of the `show ip rpf` command:

```
Router# show ip rpf 171.69.10.13
RPF information for sj-eng-mbone.cisco.com (171.69.10.13)
  RPF interface: BRI0
  RPF neighbor: eng-isdn-pri3.cisco.com (171.69.121.10)
  RPF route/mask: 171.69.0.0/255.255.0.0
  RPF type: unicast
```

Table 76 describes the significant fields in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPF information for name (address)</td>
<td>Host name and address that this information concerns.</td>
</tr>
<tr>
<td>RPF interface</td>
<td>For the given source, interface from which router expects to get packets.</td>
</tr>
<tr>
<td>RPF neighbor</td>
<td>For given source, neighbor from which router expects to get packets.</td>
</tr>
<tr>
<td>RPF route/mask</td>
<td>Route number and mask that matched against this source.</td>
</tr>
<tr>
<td>RPF type</td>
<td>Routing table from which this route was obtained, either unicast, DVMRP, or static mroute.</td>
</tr>
</tbody>
</table>
show ip rtp header-compression

To show RTP header compression statistics, use the **show ip rtp header-compression** EXEC command.

```
show ip rtp header-compression [type number] [detail]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type number</td>
<td>(Optional) Interface type and number.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays details of each connection.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the **show ip rtp header-compression** command:

```
Router# show ip rtp header-compression
RTP/UDP/IP header compression statistics:
Interface Serial1:
  Rcvd: 0 total, 0 compressed, 0 errors
    0 dropped, 0 buffer copies, 0 buffer failures
  Sent: 430 total 429 compressed,
    15122 bytes saved, 139318 bytes sent
    1.10 efficiency improvement factor
  Connect: 16 rx slots, 16 tx slots, 1 long searches, 1 misses
    99% hit ratio, five minute miss rate 0 misses/sec, 0 max.
```

Table 77 describes the significant fields in the display.

Table 77 show ip rtp header-compression Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Serial1</td>
<td>Type and number of interface.</td>
</tr>
<tr>
<td>Rcvd: total</td>
<td>Number of packets received on the interface.</td>
</tr>
<tr>
<td>compressed</td>
<td>Number of packets with compressed header.</td>
</tr>
<tr>
<td>errors</td>
<td>Number of errors.</td>
</tr>
<tr>
<td>dropped</td>
<td>Number of dropped packets.</td>
</tr>
<tr>
<td>buffer copies,</td>
<td>Number of buffers that had to be copied.</td>
</tr>
<tr>
<td>buffer failures</td>
<td>Number of failures in allocating buffers.</td>
</tr>
<tr>
<td>Sent: total</td>
<td>Total number of packets sent.</td>
</tr>
<tr>
<td>compressed</td>
<td>Number of packets sent with compressed header.</td>
</tr>
<tr>
<td>bytes saved</td>
<td>Total savings in bytes due to compression.</td>
</tr>
</tbody>
</table>
show ip rtp header-compression

Field	**Description**
bytes sent | Total bytes sent after compression.
efficiency improvement factor | Compression efficiency.
Connect: rx slots | Total number of receive slots.
tx slots | Total number of transmit slots.
long searches | Searches that needed more than one lookup.
misses | Number of new states that were created.
hit ratio | Number of times existing states were revised.
five minute miss rate | Average miss rate.
max. | Maximum miss rate.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
ip rtp header-compression | Enables RTP header compression.
show ip sdr

To display the session directory cache, use the show ip sdr EXEC command.

 show ip sdr [group | “session-name” | detail]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>(Optional) Displays the sessions defining the multicast group in detail format.</td>
</tr>
<tr>
<td>"session-name"</td>
<td>(Optional) Displays the single session in detail format. The session name is enclosed in quotation marks (“ ”).</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays all sessions in detail format.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

- If the router is configured to be a member of 224.2.127.254 (the default sd group), it will cache sdr announcements.
- If no arguments or keywords are used with this command, the system displays a sorted list of session names.
Examples

The following is sample output of the `show ip sdr` command:

```
Router# show ip sdr
SDR Cache - 198 entries
!Cannes Film Festival
Alan Kay: Georgia Tech Distinguished Lecture
ANL TelePresence Microscopy Collaboratory
ASC MSRC Ribbon Cutting Ceremony
audio test
Basler Fasnacht 1997!
BayLISA meeting
Belcore testing
Belcore testing2
Bielsko-Biala
calren2 - private
Cannes Testing
Cbay session
CERN ATLAS
CERN LEPC meeting
CERN LHCC
CILEA pre-test for Archaeonet
cisco Beta
cisco PIM users
CMU
CMU-UKA
CRAY T3E (Course)
```

Table 78 describes the fields in the display.

Table 78 show ip sdr Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDR Cache - x entries</td>
<td>Number of entries (sessions) in the cache.</td>
</tr>
<tr>
<td>'Cannes Film Festival</td>
<td>Name of session.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip sdr</td>
<td>Deletes a Session Directory Protocol (sdr) cache entry or the entire sdr</td>
</tr>
<tr>
<td>ip sdr cache-timeout</td>
<td>Limits how long a Session Directory Protocol (sdr) cache entry stays active in the cache.</td>
</tr>
<tr>
<td>ip sdr listen</td>
<td>Enables the Cisco IOS software to listen to session directory advertisements.</td>
</tr>
</tbody>
</table>